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Abstract

Large Language Models (LLMs) went from
non-existent to ubiquitous in the machine learn-
ing discourse within a few years. Due to the
fast pace of the field, it is difficult to identify
the remaining challenges and already fruitful
application areas. In this paper, we aim to es-
tablish a systematic set of open problems and
application successes so that ML researchers
can comprehend the field’s current state more
quickly and become productive.
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Figure 1: Overview of LLM Challenges. Designing
LLMs relates to decisions taken before deployment. Be-
haviorial challenges occur during deployment. Science
challenges hinder academic progress.
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1 Introduction

Given the quickly growing plethora of LLM re-
search papers, we aim to address two questions: (1)
Challenges: What problems remain unresolved?
and (2) Applications: Where are LLMs currently
being applied, and how are the challenges con-
straining them? For (1), we group the challenges
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in Fig. 1 into three broader categories “Design”,
“Behavior”, and “Science”. To provide answers
for (2), we explore the fields of chatbots, compu-
tational biology, computer programming, creative
work, knowledge work, law, medicine, reasoning,
robotics, and the social sciences.

This paper is an opinionated review and assumes
familiarity with LLMs and how they work (we refer
to more introductory works in Sec. 4). Further, we
focus on models trained on text data. We target a
technical researcher audience and do not discuss
political, philosophical, or moral perspectives on
LLMs.

2 Challenges

� Challenge

This box highlights a challenge.

2.1 Unfathomable Datasets

Scaling the amount of pre-training data has been
one of the major drivers to equip LLMs with
general-purpose capabilities [256]. The size of
pre-training datasets quickly outgrew the number
of documents most human teams could manually
quality-check. Instead, most data collection proce-
dures rely on heuristics regarding data sources and
filtering.

In this section, we explore the adverse conse-
quences of these heuristics and the reality that many
model practitioners possess only a nebulous under-
standing of the data on which their model has been
trained. We refer to this issue as follows.

� Unfathomable Datasets

The size of modern pre-training datasets ren-
ders it impractical for any individual to read
or conduct quality assessments on the en-
compassed documents thoroughly.

Near-Duplicates can arise in different forms
and have been reported to degrade model per-
formance [294, 200, 250]. Near-duplicates are
harder to find compared to exact duplicates; fil-
tering out of such is a standard step in most data
collection pipelines, e.g., using the MinHash algo-
rithm [57]. Lee et al. [294] propose the NearDup
method and find that over 1% of tokens emitted
unprompted from a model are part of a memorized
sequence of the C4 dataset, e.g., it contains a 61-

word sequence repeated 61, 036 times in the train-
ing split. By deduplicating it, they reduce the rate
of emitted memorizations by 10x. Abbas et al. [6]
introduce SemDeDup, a technique designed to iden-
tify semantic duplicates that, although perceptually
distinct, convey predominantly similar information,
such as sentences with analogous structures with
certain words replaced by synonyms. After apply-
ing their method to C4, they find that it improves
over NearDup. Similarly, Kaddour [250] find near-
duplicates in the Pile [165] by clustering document
embeddings and identifying clusters gathering du-
plicates.

Benchmark Data Contamination occurs when
the training dataset contains data from or similar
to the evaluation test set. This can lead to inflated
performance metrics, as the model can memorize
the test data and simply regurgitate it back during
testing.

Finding and removing all training and test data
overlaps is difficult in practice. For example, the
GPT-3 authors Brown et al. [59] found a code bug
after training, resulting in only partially removing
all detected overlaps from the training data. They
could not afford to retrain the model, so they used it
with the remaining overlaps and “cleaned” variants
of the considered benchmarks, with all potentially
leaked examples removed. They define overlap-
ping examples as examples that share at least 13
consecutive words with any other example in the
pre-training set. If an example is shorter than 13
words, they consider it overlapping if it shares all
of its words with another example.

Similarly, Dodge et al. [125] search for test data
in the web-crawled C4 corpus but measure exact
matches, normalized for capitalization and punctu-
ation. They find various input-and-label contamina-
tions of text generation and knowledge completion
tasks; and input-only contaminations of the GLUE
benchmark. They argue that there are two ways test
data can end up in a snapshot of Common Crawl
(the original dump source of C4): either a given
test set is built from a web text or uploaded after
creation. Sainz et al. [472] ask ChatGPT to gener-
ate academic benchmark instances, finding that it
has memorized multiple ones, including some test
splits. Jacovi et al. [237] propose three strategies to
mitigate contamination, including encryption and
training exclusion controls.
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Personally Identifiable Information (PII) such
as phone numbers and email addresses, have
been found within pre-training corpora, resulting
in privacy leaks during prompting. Carlini et al.
[65, 67], Lukas et al. [344] extract PII data by
prompting GPT-2; Kulkarni [283] report how an en-
gineer yields secret API keys by prompting GitHub
Copilot. Henderson et al. [195] discuss the avail-
ability of PII in law data across different jurisdic-
tions and filter it based on the legal norm in the
respective jurisdiction. El-Mhamdi et al. [137]
contend that because strong model performance
typically requires memorization of the training
data [146, 58], the (undetected) existence of PII
in the training data will likely result in models that
render them extractable.

Pre-Training Domain Mixtures Several stud-
ies have argued for diversity in the pre-training
corpus [165, 341, 291]. Many popular corpora fol-
low this by concatenating datasets from different
sources, as illustrated in Table 1. However, it re-
mains underexplored what amount of data from
different sources is necessary for strong down-
stream performances. Finding suboptimal mix-
tures can cause low transferability to downstream
tasks [593, 580] and reliance on spurious corre-
lations [253, 618, 347]. Xie et al. [622] find do-
main mixture proportions by training a small proxy
model using group-distributionally robust optimiza-
tion [471]; surprisingly, they find that the final
model trained using their found domain weights
yields improved perplexity across all domains, even
when it down-weights a domain. Given a tar-
get downstream task, Yao et al. [641], Xie et al.
[624] select subsets most useful for pre-training.
Longpre et al. [341] measure the effects of domain
compositions and find that inclusion of heteroge-
neous data sources is broadly beneficial and likely
more important than the data quality (as measured
by the document quality classifier employed by
PaLM [86] and GLaM [130]) or size, which also
motivates smaller yet more diverse pre-training
datasets [250].

Fine-Tuning Task Mixtures have to be deter-
mined for fine-tuning a pre-trained model on many
different tasks, usually with comparatively few ex-
amples per task. This technique, which we call
multitask-prompted fine-tuned LMs (MTLMs), has
demonstrated significant generalization improve-
ments with very little additional training compute.

Date Name Size Sources Public
GB Tokens∗

2014 BookCorpus
[684, 36]

5 GB 11 B Novels Yes

2019 OSCAR
[399]

6.3 T ? Webpages in 166
languages

Yes

2019 WebText
[440]

40 GB ? Webpages No

12.2020 CC-100
[100]

2.5 TB 292 B Webpages in 100
Languages

Yes

12.2020 The Pile
[165, 41]

825 GB 300 B Science, Webpages,
GitHub Code, Law,
etc.

Yes

2020 C4 [443] 745 GB 156 B Webpages Yes

10.2020 mC4 [631] ? 6.3 T Webpages in 101
Languages

Yes

2021 MassiveText
[441]

10.5 TB 2.34 T Webpages, Books,
News, and Code

No

12.2021 GLaM [130] ? 1.6 T Webpages,
Wikipedia, Conver-
sations, Forums,
Books, News

No

01.2022 Infiniset
[551]

? 2.81 T Forum dialogs,
C4 data, Code,
Wikipedia, Web-
pages

No

06.2022 ROOTS
[289]

1.61 TB 2.34 T Webpages in 46 lan-
guages and GitHub
Code in 13 lan-
guages

Yes

11.2022 The Stack
[271]

6 TB 235 B GitHub Code in 30
languages

Yes

04.2023 LLaMA
[556] / Red-
Pajama [98]

2.7 TB 1.2 T Webpages, GitHub
Code, Science,
Wikipedia, Books

Yes

06.2023 RefinedWeb
[415]

2.8 TB 600 B Webpages Yes

Table 1: Overview of Selected Pre-Training Datasets.
Over the years, pre-training datasets have become more
unfathomable: they grew rapidly in size and diversity,
and not all datasets are publicly available (we do not
include datasets that have very little or no information
available about them). Unless stated otherwise, the
natural language is in English. ∗ We report the number
of tokens as provided by the respective paper based on
their proposed tokenization scheme.

For example, instruction fine-tuning via task in-
structions prepended to each set of input-output
pairs is a very popular scheme, which we will later
discuss in more detail in Sec. 2.9. Wang et al. [589]
propose Super-NaturalInstructions, a
fine-tuning dataset with 1,616 diverse tasks and
expert-written instructions. Muennighoff et al.
[377] extend MTLM to the multilingual setting,
showing that fine-tuning on multilingual tasks with
English prompts improves results on tasks in all
languages.

However, similar to the previous paragraph, how
to balance the task datasets well remains unclear.
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As the tasks can vary in size considerably, Raf-
fel et al. [443] mix each task in proportion to the
number of examples in its ’train’ split (up to some
max_num_examples). Jang et al. [239] report
that MTLMs can underperform expert LLMs fine-
tuned on only a single task because of (i) nega-
tive task transfer, where learning multiple tasks at
once hinders the learning of some specific tasks,
and (ii) catastrophic forgetting of previous tasks
when learning new tasks. Iyer et al. [235] study
varying task (sets) proportions, finding several
trade-offs and concluding that the right values for
these parameters depend on the downstream end-
goals. Longpre et al. [340] balance different sets of
task sources by omitting them, one at a time, and
ranking their contributions on the MMLU bench-
mark [197]; further, they mix the input prompt
templates of zero- and few-shot prompting; find-
ing that this improves the performance in both set-
tings. Another trend is to imitate closed-source
models like ChatGPT by collecting a dataset of
API outputs (against OpenAI’s terms and condi-
tions) and fine-tuning an open-source LM with
it [540]. However, Gudibande et al. [180] point
out that such imitation models are only good at
mimicking the proprietary model’s style but not
its content, a distinction that has been discussed
extensively in the causality literature [253]. They
conclude that substantial capability gaps between
fine-tuned open-sourced and closed-source models
remain, motivating future work for better imitation
data.

2.2 Tokenizer-Reliance

Tokenization is the process of breaking a sequence
of words or characters into smaller units called
tokens, such that they can be fed into the model.
One common tokenization approach is subword to-
kenization, where we split words into smaller units,
called subwords or WordPieces [490]. The goal
is to handle rare and out-of-vocabulary words in
a model’s vocabulary effectively while maintain-
ing a limited number of tokens per sequence in the
interest of computational complexity. Subword to-
kenizers are usually trained unsupervised to build
a vocabulary and optionally merge rules to encode
the training data efficiently.

However, the necessity of tokenization comes
with multiple drawbacks [257]; some of which we
discuss below. For example, Ahia et al. [13], Petrov
et al. [426] show that the number of tokens nec-

essary to convey the same information varies
significantly across languages, making the pric-
ing policy of API language models, which charge
users based on the number of processed or gen-
erated tokens, potentially unfair. They find that
users of many supported languages are overcharged
while receiving subpar results, with this group pre-
dominantly residing in areas where these APIs are
already less affordable.

Further, discrepancies between the data that
a tokenizer and a model have been trained on
can lead to glitch tokens [465], which can sub-
sequently cause unexpected model behavior as
their corresponding embeddings are essentially un-
trained. This coupling between the tokenizer and
pre-training corpus creates the burden of a new
training run of the tokenizer each time the pre-
training corpus is modified.

Next, Tokenization schemes that work well in a
multilingual setting, particularly with non-space-
separated languages such as Chinese or Japanese,
remain challenging [157, 91].

Existing subword tokenization schemes are pre-
dominantly greedy algorithms trying to encode
language as efficiently as possible regarding the
number of tokens used. Naturally, these methods
favor subwords comprising larger parts of the train-
ing data and, therefore, subwords that are shared
across many languages. This favors languages
with shared scripts like Latin and Cyrillic, result-
ing in suboptimal tokenization of low-resource lan-
guages [92, 676].

� Tokenizer-Reliance

Tokenizers introduce several challenges,
e.g., computational overhead, language de-
pendence, handling of novel words, fixed
vocabulary size, information loss, and low
human interpretability.

Subword-Level Inputs are the dominant
paradigm, providing a good trade-off between
vocabulary size and sequence length. Byte-Pair
Encoding [490, 577] (BPE) starts with the set
of symbols (characters or bytes) that comprise
the training data. The tokenizer is then trained
to learn rules to merge the most frequent pair
of two consecutive tokens—defined by the
existing vocabulary—into a new vocabulary item.
Byte-level BPE (BBPE) [577] is an extension
of BPE with byte-level subwords, particularly
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Tokenization can sometimes lead to a loss of 
information. For example, in languages where 
word boundaries are not clearly defined, such 
as Chinese. …
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Figure 2: Exemplary Drawbacks of relying on Tokenization. (1) The tokenizer training step involves non-trivial
computations, e.g., multiple passes over the entire pre-training dataset, and introduces a dependency on it, which
can become especially problematic in multilingual settings. (2) The embedding layer E and output layer W of
LLMs involve the vocabulary size; e.g., making up ≈ 66% of the model’s parameter count in T5 models [629].

suited for multilingual tasks where it enables
vocabulary sharing between languages. A trained
BPE tokenizer applies the previously learned rules
to tokenize inputs. WordPiece [485, 617] is a
closed-source tokenization algorithm used, e.g.,
in BERT [120]. Like BPE, WordPiece starts with
a small initial vocabulary, which is iteratively
extended by learning merge rules and creating new
vocabulary items. Rather than selecting the most
frequent pair of consecutive tokens, WordPiece
uses a scoring function to normalize the frequency
of the pair by the frequencies of the individual
tokens to prioritize common pairs with rare
individual tokens. Unigram Tokenization [281]
iteratively trims a large base vocabulary to a given
target size. To this end, at each step of the tokenizer
training, a unigram language model is used to
compute a loss over the training data conditional
on a certain vocabulary item being removed.
A proportion of the subwords with the lowest
losses are removed to form the base vocabulary
for the next iteration. Unigram tokenization is
probabilistic, i.e., during inference, all possible
tokenizations of a given sequence are scored
using the unigram language model, and the most
likely one is selected. SentencePiece [282] is a
commonly used open-source library, implementing
several tokenization algorithms such as (B)BPE
and Unigram tokenization. SentencePiece also
implements non-subword tokenization approaches
like word- and character-level tokenization.

Byte-Level Inputs are an alternative to subword
tokenization is use byte-level inputs. Byte-level
inputs can either be used in combination with sub-
word tokenizers [577] or used to define a limited
vocabulary that can be used to encode all possi-
ble sequences. For example, Xue et al. [630]
train a non-subword mT5 model using UTF-8
bytes rather than subword tokens as inputs, show-
ing promising performance on multilingual data.
While this enables subword-free LLMs, UTF-8 en-
codes Latin languages with fewer bytes than e.g.,
Chinese, Japanese or Korean1. Tay et al. [546] pro-
pose the Charformer, a tokenization-free model
which learns a soft subword tokenization in la-
tent space (Gradient-Based Subword Tokenization)
given byte-level inputs. Charformer performs com-
parably to subword-based models while incurring
less computational overhead than other byte or
subword models. Choe et al. [83] train a small-
scale, 0.8B language model based on raw byte-
level inputs and show that it performs compara-
bly. On a smaller scale, Clark et al. [94] show that
their tokenization- and vocabulary-free encoder Ca-
nine outperforms a comparable tokenization-based
model. Yu et al. [652] address the computational
cost that byte-level tokenization incurs by segment-
ing input sequences into local patches, which can
be processed in parallel. Similarly, Horton et al.
[212] propose to operate directly on file bytes. In a

1https://www.unicode.org/versions/Unicode15.0.0/

5

https://www.unicode.org/versions/Unicode15.0.0/


parallel line of work, Rust et al. [467] render text
as images and train an encoder model to predict the
raw pixels of the images.

2.3 High Pre-Training Costs
The vast majority of the training costs go toward the
pre-training process. Training a single LLM can
require hundreds of thousands of compute hours,
which in turn cost millions of dollars and consume
energy amounts equivalent to that used by several
typical US families annually [412, 86, 44]. Re-
cently proposed scaling laws [256] posit that model
performances scale as a power law with model size,
dataset size, and the amount of compute used for
training, which is fairly unsustainable and can be
classified as Red AI [487], where state-of-the-art re-
sults are essentially “bought” by spending massive
computational resources. For example, depending
on the exact law coefficients, reducing the error
from 3% to 2% can require an order of magnitude
more data or compute [518].

� Unsustainable Loss Power-Law [256]

Performance increases through larger com-
pute budgets but at a decreasing rate if the
model or dataset size is fixed, reflecting a
power law with diminishing returns.

In the following, we look at two lines of work
aiming at resolving such issues.

Compute-Optimal Training Recipes [201, 256]
In Sec. 2.1, we discussed how the availability
of LLM pre-training data has become abundant
through the quickly-spread practice of including
web-crawled text. Further, thanks to the intro-
duction of Transformer models [563] and suit-
able hardware [210], we have scaled models to
unprecedented sizes. Assuming that we have not
yet reached the limits of data [45, 568, 415] nor
model sizes [256, 206, 398]; currently, the main
bottleneck is the amount of compute available [1].
Given a particular budget, how large should the pre-
training corpus and model be to maximize training
efficiency?

As mentioned at the beginning of this section,
one recent proposal is to learn empirical “scaling
laws” [201, 256], which describe the relationship
between LLM performance and the compute bud-
get, model, and dataset size. These laws can pro-
vide the right scaling recipe for compute-optimal
training, ideally, even when extrapolating to larger

compute budgets. For example, OpenAI [398] re-
port that they were able to accurately predict the
model performance of the full-size GPT-4 model
based on the performance of a series of smaller
models using at most 10,000x less compute than
the full model.

The exact power law coefficients are still heav-
ily debated. Kaplan et al. [256] put forward that
the model size should be scaled more aggressively
than the dataset size to use a given compute budget
optimally. Contrary to this, Hoffmann et al. [206]
find that many LLMs are undertrained and argue
that the number of parameters and data should be
scaled equally. However, power laws sometimes
come in the form of bounds, which can span an
order of magnitude difference in the amount of
data to be used given a concrete compute budget
[665]. Further, the pre-training loss does not al-
ways correlate well with downstream performance
[252, 332, 251].

The viewpoint of Touvron et al. [556], Vries
[571], Touvron et al. [557] is that when selecting
a model size, the computation resources for later
usage (inference) should be considered, not just
the one-time training costs. They suggest that it
might be beneficial to train a smaller model more
intensively upfront to offset larger inference costs
in the future. Hence, they train models of various
sizes on more tokens than are typically used to
achieve the best performance possible, given the
model size.

One remaining hurdle of performance prediction
is inverse scaling, which we discuss in Sec. 2.14.
Since scaling laws were typically constructed in the
context of pre-training and thereby decoupled from
downstream tasks, it remains an open question of
how to predict inverse scaling properties. Tay et al.
[544] find that scaling laws can differ in upstream
and downstream setups; aside from only the model
size, model shape matters for downstream fine-
tuning.

Pre-Training Objectives Various pre-training
objectives (PTO) are suitable for performing self-
supervised training of LLMs. The exact choice of
PTO heavily influences the model’s data efficiency
during pre-training, which in turn can reduce the
number of iterations required. A PTO typically
is a function of the (i) architecture, (ii) input/tar-
gets construction (e.g., target span length, low/high
corruption, see Fig. 4), and (iii) masking strategy
(Fig. 3). While (i) and (ii) can be disentangled and
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can attend to (uni- or bi-directional).

should not be conflated conceptually [545], in prac-
tice, there exist popular combinations that achieve
good performances.

Attending to all tokens, as shown in Fig. 3(left),
is the most data-efficient strategy since it uses con-
text from before and after the token to be predicted.
However, for that reason, it is unsuitable for text
generation [120], since it considers future context
for prediction. We typically employ it in natural
language understanding (NLU) tasks [120], where
it has shown strong results. The next token predic-
tion objective is most suitable for natural language
generation (NLG) but also the least data efficient
since it only attends to the past context (Fig. 3(mid-
dle)). More recent advances in pre-training objec-
tives aim to find a middle-ground to increase data
efficiency by providing stronger and more diverse
training signals, e.g., the Prefix LM, which partly
attends to past tokens, as illustrated in Fig. 3(right)
and discussed below.

The following discusses the trade-offs between
some of the recently proposed objectives. Fig. 4
visually depicts the different pre-training objectives.
Notation-wise, we denote a sequence of N tokens
x as x = x1, . . . , xN .

We start with the most basic and still widely-
used Language Modeling [59] (or next token pre-
diction) objective. Here, we learn parameters θ by
maximizing the likelihood of the next token given
the previous tokens,

L(x) =
N∑
i=1

logP (xi|x1, . . . , xi−1;θ). (1)

Masked Language Modeling (MLM; or
Cloze) [549, 120] hides a set proportion of
tokens in the sequence by replacing them with a
special [MASK] token. The literature employs
the MLM objective for non-autoregressive, i.e.,
non-generative, bidirectional context models,

where the model uses tokens before and after the
target token for predictions, leveraging a more
holistic understanding of its context than the NTP
objective. Furthermore, we can use each input
sentence to predict multiple masked tokens in a
single pass, while the NTP objective typically
learns from predicting one token at a time.

Let xMASK denote the set of indices of the
masked tokens and x¬MASK the unmasked tokens.
The objective of MLM is then to maximize the
likelihood given the parameters θ,

L(xMASK|x¬MASK) =
1

|xMASK|
·

∑
i∈xMASK

logP (xMASKi |x¬MASK;θ).
(2)

Patel et al. [410] show that such models produce
representations more suitable for transfer learning;
however, they come with difficulties in performing
in-context learning (Sec. 2.7).

To further improve the training efficiency of the
MLM objective, Bajaj et al. [33] propose to replace
input tokens with ones generated by an auxiliary
language model (ALM), resulting in a Model gen-
erated dEnoising TRaining Objective (METRO).
Their approach consists of roughly three compo-
nents: (i) train an ALM using the MLM objec-
tive, (ii) given some inputs with masked positions,
predict the tokens (with the ALM), (iii) train the
main model to correct these tokens inserted in the
masked positions, i.e., 1) predict whether the ALM
has replaced a token and if so, 2) predict the origi-
nal token. They train the auxiliary and main model
jointly.

Prefix Language Modeling [443] generalizes
language modeling by allowing prefix tokens with a
bidirectional receptive field to be added to the input
(without prefix, it is equivalent to standard LM).
Note that this is still different from the bidirectional
context as in MLM, where we always condition on
all the tokens before and after the masked ones (see
Fig. 3 left). For computing the hidden states of the
prefix, prefix-LM attends to tokens before and after
(see Fig. 3 right).

Span Corruption [303, 443, 132] or span de-
noising refers to a group of denoising objectives
that generalize MLM to denoise contiguous se-
quences of tokens within a given text, called spans.
The denoising objectives typically replace the sam-
pled spans with a single unique masking token
and train the model to fill it in. Raffel et al. [443]
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Figure 4: Self-Supervised Data Construction by Pre-Training Objectives, adopted from Tay et al. [545]. We
indicate masked tokens with gray rectangles, which become the targets. For brevity, we omit special tokens.

shows that this can speed up training because span
corruption produces shorter sequences on average
compared to corrupting individual tokens in an i.i.d.
manner.

Mixture of Denoisers [545] (MoD) refers to
injecting objective diversity by mixing multiple
denoising objectives. Tay et al. [545] categorize
three denoising objectives: {R,S,X}-Denoiser. The
regular denoising corresponds to the previously in-
troduced span denoising. Specific denoising com-
prises splitting a given sequence into a prefix act-
ing as the context and a suffix acting as the target.
In extreme denoising, we corrupt large parts of
the input by either (a) increasing the proportion
of masked tokens per span or (b) increasing the
span length forcing the model to generate long se-

quences with limited context, which we illustrate
in Fig. 4). The MoD objective has subsequently
been shown to improve model performance by con-
tinuing training pre-trained LLMs [443, 86] for
relatively few steps [547].

Fill In the Middle Bavarian et al. [38] propose
to augment the next token prediction objective by
shuffling tokens within a document such that we
fill in the middle (FIM) based on prefix and suf-
fix. They demonstrate that models pre-trained on a
mixture of FIM-transformed and left-to-right data
result in left-to-right and FIM capability models.

Meet in the Middle Nguyen et al. [382] extend
the FIM objective by enabling bidirectional context
to construct a denser, more data-efficient supervi-
sion signal while maintaining the autoregressive
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nature of the underlying model: They train two
decoders—one forward −→p (xi | x<i;θ) and one
backward language model←−p (xi | x<i;θ)—with
shared parameters θ. Additionally, they add an
agreement regularize to the loss, encouraging the
forward and backward model to agree: for a dataset
S of sequences, the full pre-training loss is

∑
x∈S

|x|∑
i=1

− log−→p (xi | x<i;θ)︸ ︷︷ ︸
NLL for forward model

− log←−p (xi | x>i;θ)︸ ︷︷ ︸
NLL for backward model

+βDTV
i,x (−→p ∥←−p )︸ ︷︷ ︸

agreement regularizer

,

(3)

where DTV
i,x (−→p ∥←−p ) is the total variation distance

among the two models on the i-th token. Once
pre-training has been completed, we can use only
the forward model −→p .

Parallelism Strategies The sheer size of LLMs
makes it hard to train or even do inference with
them on only one accelerator (GPU, TPU, etc.).
A common solution is model parallelism, which
can be viewed as a divide-and-conquer strategy:
we slice up various parts of the model (dividing
the problem into sub-problems), distribute them
across multiple devices, with each device comput-
ing a portion of the overall computation (solve each
problem independently) and combine all results to
produce the final output (forward/backward pass).

Implementing model parallelism synchronously
creates a problem where running data batches
through multiple workers with sequential depen-
dency (each layer depends on results from the pre-
vious layer) leads to significant waiting times and
under-utilization of computation resources.

Another strategy is pipeline parallelism, which
combines model parallelism with data parallelism,
meaning that we not only distribute parts of the
model across different devices but parts of the data
too, i.e., each worker splits its mini-batch further
into micro-batches with gradients being accumu-
lated across all micro-batches before the weight
update. Huang et al. [226] instantiate such an ap-
proach called GPipe, which divides each mini-
batch into smaller micro-batches distributed across
different accelerators simultaneously; gradients are
applied synchronously at the end. Compared to
naive model parallelism, this decreases waiting

times and increases the utilization of computational
resources.

These issues have motivated asynchronous paral-
lelization schemes. Recht et al. [453] present Hog-
wild!, which greedily applies gradients to the local
weights on each accelerator as soon as they arrive,
offering better resource utilization than pipeline
parallelism but suffering from training instabilities
due to stale gradients which are based on outdated
model weights.

Gomez et al. [172] propose N-Wise interlock-
ing backpropagation, which is a generalization of
end-to-end and local training. While end-to-end
(global) training performs a forward pass through
all layers, computes a loss and gradients, and back-
propagates through all layers, local training per-
forms forward passes through all layers individ-
ually and immediately computes a local loss and
gradient update, offering higher resource utilization
at the cost of (empirically) worse task performance.
N-Wise interlocking backpropagation strikes a com-
promise by performing a forward pass through N
layers before computing a loss and updating the
parameters of the associated layers, enabling better
layer communication than local training and higher
computational efficiency than end-to-end training.

Chowdhery et al. [86] leverage a combination
of model parallelism and fully sharded data par-
allelism (FSDP) [628, 674]—a technique where
each device only holds a subset of the model pa-
rameters, gradients, and optimizer states, and pa-
rameters necessary for local computations are com-
municated on-demand—to enable highly parallel,
high throughput training across thousands of chips
within a single TPU pod. PaLM further employs
data parallelism to achieve scaling at pod level,
leveraging the Pathways [37] system to distribute
data.

In a parallel line of work, Lepikhin et al. [298]
propose GShard, a model parallelism method that
extends the XLA [468] compiler, enabling auto-
matic sharding of models.

Miscellaneous Rae et al. [441] stack the lay-
ers of a 4.5B parameter model to jump-start and
accelerate the training of a 9B model, which led
to a 40% reduction in compute; an idea that has
been previously used for training smaller-scale
LMs [173]. Brown et al. [59] progressively in-
crease the batch size from a small to the full value
over training when training GPT-3; a trick that
has been previously used for training image mod-

9



els [514]. Sanyal et al. [476] apply latest weight av-
eraging [249] to LLMs between 1 and 12B param-
eters; for a 6.9B parameter model, they reach sav-
ings of up to 4,200 GPU hours. For smaller-scale
models, there exist various pre-training speedup al-
gorithms [663, 685], but they have not been scaled
up yet and shown to offer only limited gains when
compared with budget-adjusted baselines [251].

2.4 Fine-Tuning Overhead

A potential drawback of pre-training LLMs on mas-
sive and diverse sets of textual data is that the re-
sulting models might struggle to explicitly cap-
ture the distributional properties of task-specific
datasets. To address this, fine-tuning refers to
adapting the pre-trained model parameters on com-
paratively smaller datasets that are specific to an
individual domain or task. LLM fine-tuning is
highly effective at adapting LLMs for downstream
tasks [215, 120, 440].

Technically speaking, fine-tuning can be
achieved by further training a model on a smaller
dataset. Depending on the model architecture, this
is done by either (i) directly fine-tuning pre-trained
models using a standard language modeling objec-
tive or (ii) adding individual learnable layers to the
output representations of a pre-trained language
model, which are designed to create compatibil-
ity between the model’s output representations and
the output formats of individual downstream tasks
(e.g., for text classification or sequence labeling).
See Devlin et al. [120] (Figure 1) for an illustration.

However, LLMs with billions of parameters have
large memory requirements to store (i) the model
parameters, (ii) the model activations, and (iii) the
gradients and corresponding statistics. Due to lim-
ited device memory (e.g., GPU or TPU) necessi-
tates access to large clusters with many devices
to fine-tune a full LLM, limiting access to a few
institutions with large compute resources.

� Large Memory Requirements

Fine-tuning entire LLMs requires the same
amount of memory as pre-training, render-
ing it infeasible for many practitioners.

Moreover, while full model fine-tuning is ef-
fective at adapting LLMs to perform well on spe-
cific downstream tasks, individual copies of fine-
tuned LLMs need to be stored and loaded for
individual tasks, which is computationally ineffi-

cient [213, 311] and requires practitioners to keep
individual fine-tuned LLMs in memory for every
task. We illustrate this overhead in Figure 5.

� Overhead of Storing and Loading
Fine-Tuned LLMs [213, 311]

When adapting an LLM via full-model fine-
tuning, an individual copy of the model
must be stored (consuming data storage) and
loaded (expending memory allocation, etc.)
for each task.

Parameter-efficient fine-tuning An alternative
method to adapt an LLM to a specific dataset/do-
main is via parameter-efficient fine-tuning (PEFT).
PEFT refers to a class of methods that adapt LLMs
by updating only a small subset of model parame-
ters. Adapters [213] are one of the earliest works
on PEFT. This method incorporates additional,
learnable layers into a Transformer architecture that
are updated during fine-tuning whilst keeping the
remainder of the network unchanged. Experimen-
tal results on 26 text classification tasks (incl. the
GLUE benchmark [575]) reveal that models trained
via Adapters are competitive with full fine-tuning
while updating only 3% of the model’s parame-
ters. Ben Zaken et al. [40] instead propose only
to update the model’s bias terms for fine-tuning,
which make up less than 1% of the model’s pa-
rameters. Experimental results show competitive
performance across tasks of the GLUE benchmark.
We are aware of three general frameworks for incor-
porating adapters into language model fine-tuning,
namely AdapterHub [428], LLM-Adapters [219],
and HuggingFace’s PEFT library [356].

PEFT methods introduced for larger mod-
els include prefix-tuning [311] and prompt-
tuning [299], which both operate by prepending
a set of learnable token embeddings to an input.
These token embeddings (also referred to as soft
prompts [299]) are learned during the fine-tuning
stage, whereas the remainder of the model parame-
ters remains fixed. Most notably, such soft prompts
contain thousands rather than millions of param-
eters and are much more efficient to store. No-
tably, one still has to backpropagate through the
network while fine-tuning the tokens. Alternatives
for models with only black-box API access have
been proposed too [528, 122].

It has been shown that prompt-tuning can
learn generalizable representations with very small
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Figure 5: Fine-tuning an LLM for a specific down-
stream task. (a) illustrates vanilla fine-tuning, which
requires updating the entire model, resulting in a new
model for each task. In (b), PEFT instead learns a small
subset of model parameters for each task with a fixed
base LLM. The same base model can be re-used during
inference for different tasks.

amounts of training data, achieving competitive
performances when trained on less than 100 exam-
ples for safety classification [376] or five examples
for multilingual question answering [11]. In addi-
tion to that, recent work investigates the potential
of using soft prompts for pre-training and transfer
learning across different tasks [179, 572].

Liu et al. [331] introduce (IA)3, which scales
activations in individual Transformer layers with
learnable vectors. The authors demonstrate its ef-
fectiveness by showing that models trained using
(IA)3 outperform full model fine-tuning on various
datasets whilst updating only 0.01% of the model’s
parameters.

Malladi et al. [355] propose a memory-efficient
zeroth-order (MeZO) optimizer, which only re-
quires the same memory footprint as during in-
ference (instead of storing gradients or optimizer
states). Further, it can optimize non-differentiable
objectives like accuracy or F1 scores, which con-
ventional gradient-based tuning methods cannot.

Hu et al. [218] propose Low-Rank Adaptation
(LoRA), which formulates parameter updates of

weight matrices at individual Transformer layers as
an additive low-rank decomposition. Such a repa-
rameterization avoids the need to compute dense
matrix multiplications. Dettmers et al. [118] ex-
tend LoRA to quantized LLMs, drastically reduc-
ing memory usage, allowing them to fine-tune a
65B model on a single 48GB GPU. The authors
mention that regular training of the same model
requires more than 780 GB of GPU memory.

Compute Requirements However, despite sub-
stantial improvements in memory complexity
needed to fine-tune LLMs for specific tasks, a re-
maining challenge is the time complexity. Fine-
tuning an LLM, even with PEFT methods, still
requires full gradient computation. The compu-
tational infrastructure needed to adapt LLMs pro-
hibits potential applications like personalization on
smaller devices.

� Full Matrix Multiplications

Parameter-efficient fine-tuning of LLMs
still requires computing full forward/back-
ward passes throughout the whole network.

2.5 High Inference Latency

According to Pope et al. [431], Weng [605], two
reasons why LLMs exhibit high inference latencies
are: (1) low parallelizability since the inference
procedure proceeds one token at a time and (2)
large memory footprints, due to the model size
and the transient states needed during decoding
(e.g., attention key and value tensors). Further, the
authors also discuss the quadratic scaling of the
attention mechanisms in Transformers, which we
discuss separately in Sec. 2.6.

� High Inference Latency [431, 605]

LLM inference latencies remain high be-
cause of low parallelizability and large mem-
ory footprints.

In the following section, we review techniques
used to address these challenges by e.g., reduc-
ing the memory footprint (size and/or bandwidth),
or accelerating specific computational operations.
Note that some of these techniques may also be
applicable during the training process, but we dis-
cuss them here since they are not only designed for
training, like the approaches discussed in Sec. 2.3.
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Efficient Attention Roughly two lines of work
aim to accelerate attention mechanism computa-
tions by (i) lower-level hardware-aware modifica-
tions or (ii) higher-level sub-quadratic approxima-
tions of the attention mechanism.

For the former, multi-query attention [493] aims
to reduce memory bandwidth bottlenecks when se-
quentially generating sequences of tokens using
Transformer decoder layers by keeping only one
attention head for the key and value tensors. Sim-
ilarly, Dao et al. [107], Pagliardini et al. [404] re-
duce memory bandwidth by proposing an alter-
native computation method for multi-head self-
attention, called FlashAttention, to minimize
the number of I/O operations to speed up the com-
putation on modern GPUs. As an optimized atten-
tion implementation, FlashAttention lever-
ages operator fusion to reduce the memory band-
width bottleneck. Pagliardini et al. [404] build
on top of FlashAttention and incorporate at-
tention sparsity patterns, encompassing key/query
dropping and hashing-based attention. Pope et al.
[432] implement different sharding techniques to
efficiently spread the feedforward and attention
computations across devices while optimizing for
inter-device communication costs, enabling context
lengths of up to 43,000 tokens using multi-query
attention.

With regards to the second stream of work, a
common theme to improve the computational or
memory complexity of the attention mechanism is
to sparsify the attention matrix or introducing (lin-
ear) approximations [543]. However, the scalabil-
ity of some efficient Attention approximations has
been questioned. For example, Tay et al. [542], Hua
et al. [220] find that the Performer attention approx-
imation [85] severely underperforms the vanilla
self-attention mechanism, especially when scaled
up to large models.

Quantization is a post-training technique that
reduces the memory footprint and/or increases the
model’s throughput by reducing the computational
precision of weights and activations. nuQmm [407]
and ZeroQuant [643] use a non-uniform quan-
tization method to quantize weights and apply
custom CUDA kernels for computational benefits.
LLM.int8() [117] is a degradation-free quanti-
zation scheme enabling efficient inference of multi-
billion parameter LLMs by utilizing Int8 quantiza-
tion and falling back to higher precision for certain
outlier features without the need for re-training.

Similarly, GLM-130B [658] uses a degradation-
free 8-bit quantization scheme, storing weights in
8-bit and performing matrix multiplications in 16-
bit precision. Frantar et al. [153] propose an effi-
cient, one-shot quantization technique to compress
LLM weights down to 3 to 4 bits per weight, en-
abling 175B parameter models to be run on a single
GPU. Dettmers et al. [119] further improve upon
this by combining higher precision representations
for outlier weights and grouped quantization.

Pruning is a complementary post-training tech-
nique to quantization, removing parts of the
weights of a given model (without degrading its per-
formance). An important distinction is whether the
pruning follows a structured pattern or is unstruc-
tured. Structured sparse models substitute dense
sections of a model with an assembly of signifi-
cantly smaller yet still dense components. Unstruc-
tured sparse models contain weights of value zero,
which do not influence the network’s behavior and
can therefore be committed in theory. However, in
practice, it is more challenging to translate theo-
retical to practical computation savings on current
hardware [161, 112, 336].

On the structured side, early work on pruning
language models mainly aims at comparatively
small MLM-type models [592, 143, 243]. Ma et al.
[349] propose LLM-Pruner, which aims at pruning
LLMs in a task-agnostic manner while preserving
the zero-shot capabilities of the models. To this
end, LLM-Pruner adopts a three-stage pruning pro-
cedure where 1) interdependent structures within
the model are identified and grouped, 2) the contri-
bution to the overall performance is estimated for
each group, and low-performing groups are pruned,
3) performance recovery via parameter-efficient
fine-tuning procedure using LoRA [218].

On the unstructured side, SparseGPT [152] is an
unstructured pruning approach specifically devel-
oped to be fast enough to be run on LLMs with
hundreds of billions of parameters within a few
hours, being able to prune the number of parame-
ters by up to 60% while maintaining roughly the
same model performance. Sun et al. [527] pro-
pose Wanda (Pruning by Weights and activations),
which applies magnitude pruning based on the
product of each weight’s magnitude and the norm
of the corresponding input activations, matching
SparseGPT in performance while requiring only
a single forward pass to prune the network. Both
SparseGPT and Wanda can be extended to per-
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form semi-structured pruning, enabling n:m spar-
sity [228, 680] and achieving the corresponding
speed-ups on recent GPUs [369].

Mixture-of-Experts architectures typically con-
sist of a set of experts (modules), each with unique
weights, and a router (or gating) network, which
determines which expert module processes an in-
put. MoE models decrease inference time by not
using all experts at once but only activating a sub-
set of them. Further, they can reduce communica-
tion across devices in model-distributed settings by
placing each expert on a separate accelerator; only
the accelerators hosting the router and the relevant
expert model must communicate. Shazeer et al.
[495] propose one of the first MoE layers embed-
ded within a language model, which they refer to
as sparsely-gated MoEs (SG-MoEs). They denote
by G(x) and Ei(x) the gating network output and
the i-th expert network output for a given input
x, respectively. We can then write the output as
y =

∑n
i=1G(x)iEi(x). Wherever G(x)i = 0,

we do not need to compute Ei(x), thereby saving
compute during inference. Lepikhin et al. [298]
scale up an SG-MoE model to 600B parameters
by proposing GShard, a model parallelism method
that extends the XLA [468] compiler. While SG-
MoE selects the top-k experts with k > 1, the
Switch Transformer (ST) [145] architecture uses
k = 1 experts, which reduces routing computation
and communication across experts (which may be
located on different accelerators). ST empirically
outperformed a strongly tuned T5 model with up to
7x pre-training speedups. Lewis et al. [302] notice
that the learned routers can result in unbalanced
assignments across experts. To ensure balanced
routing, they formulate a linear assignment prob-
lem that maximizes token-expert affinities while
equally distributing the number of tokens across
experts. Yu et al. [653] propose sMLP, an MoE
using only MLPs blocks, which (i) they scale up to
10B, (ii) results in a 2x improvement in pre-training
speed, and (iii) outperforms sparse Transformer
counterparts.

However, MoE models still suffer from unique
issues like expert collapse (all experts learning the
same), likely caused by underconstrained routing
functions [80]. For example, Roller et al. [459]
demonstrates that learned expert assignments do
not always outperform random ones.

Interestingly, instead of designing an architec-
ture for sparsity explicitly, Li et al. [314] observe

that the activation maps of default Transformer
models often emerge to be very sparse implicitly;
the larger the model, the sparser measured by the
percentage of nonzero entries. Similarly, Zhang
et al. [670] find that post-training MoEfication, i.e.,
converting monolithic models to equivalent MoE
models, can speed up inference by 2x.

Cascading refers to the idea of employing
differently-sized models for different queries [75].
In spirit, this idea is similar to Mixture-of-Experts
models, but instead of learning a routing module,
we employ a cascade of multiple, differently-sized
monolithic models (these can be even black-box
API models) and learn a scoring function that de-
cides which model(s) receive which query. Chen
et al. [75] demonstrate that this strategy dominates
the Pareto frontier between accuracy and cost.

Decoding Strategies can greatly impact the com-
putational cost of performing inference. For ex-
ample, beam search trades off compute for higher-
quality results. Another example of a computa-
tionally expensive decoding scheme is sample-and-
rank [8] where N independent sequences of tokens
y1, . . . , yN are obtained using random sampling,
and the highest probability sequence is used as the
final output.

Latency-oriented strategies such as speculative
sampling [522, 300, 74] first autoregressively gen-
erate a draft of length K using a smaller (draft)
model; then, the larger (target) model scores the
draft, followed by a modified rejection sampling
scheme to accept a subset of the tokens from left to
right. Similar ideas have been proposed in various
contexts, such as for blockwise parallel genera-
tion [522], grammatical error correction [529], and
with a larger LLM refining generation produced by
a small model [265]. Del Corro et al. [114] observe
that tokens towards the end of a sequence are easier
to predict due to more contextual information, mo-
tivating a new decoding strategy that skips earlier
layers in the network for such tokens.

2.5.1 Software
Various frameworks have been designed to en-
able the efficient training of multi-billion to
trillion parameter language models such as
DeepSpeed [450] and Megatron-LM [501] to
account for the unique challenges arising when
training such models. This is necessitated by the
fact that most LLMs do not fit into a single device’s
(GPU, TPU) memory, and scaling across GPUs and
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compute nodes needs to account for communica-
tion and synchronization costs. FlexGen [497]
provides further speed-ups by aggregating memory
and compute resources from the GPU, CPU, and
disk and utilizing techniques such as 4-bit quan-
tization, enabling inference with 175B parameter
models on a single GPU.

The frameworks typically combine existing par-
allelism strategies to compensate for drawbacks
and scale model training across multiple sets of
compute nodes, within compute nodes, and across
multiple GPUs per node. e.g., Smith et al. [515]
use tensor slicing within a node, pipeline paral-
lelism across nodes, and data parallelism to train
multiple model replicas over sets of nodes. Addi-
tional features include memory optimizations [445,
454, 446], communication-efficient [536, 307, 343]
and fused optimizers2, and support for MoE train-
ing [444].

Specialized implementations such as
Tutel [230] and MegaBlocks [160] of-
fer efficient sparse MoE training, while
Alpa [677] enables automatic data and model
parallelism for LLMs written in Jax. The
FasterTransformer3 library includes highly
optimized Transformer encoder and decoder
implementations for TensorFlow, PyTorch, and
Triton.

Kwon et al. [285] introduce vLLM, an open-
source library for efficient inference and LLM serv-
ing. vLLM employs PagedAttention, which par-
titions each sequence’s KV cache into fixed-size
blocks. When performing attention computations,
blocks are fetched from non-contiguous memory.
This enables memory sharing, reducing memory
consumption and transfers in decoding strategies
such as beam search, ultimately improving through-
put.

The Petals [54] library4 allows users to col-
laboratively fine-tune and run LLMs by distribut-
ing subsets of model parameters to individual ma-
chines.

All of these libraries address the enormous com-
putational costs associated with training and run-
ning LLMs, either by offering more efficient im-
plementations, lowering memory requirements, or
using distributed or decentralized computing strate-
gies.

2https://github.com/nvidia/apex
3https://github.com/NVIDIA/FasterTransformer
4https://github.com/bigscience-workshop/petals

2.6 Limited Context Length

Addressing everyday NLP tasks often necessitates
an understanding of a broader context. For exam-
ple, if the task at hand is discerning the sentiment
in a passage from a novel or a segment of an aca-
demic paper, it is not sufficient to merely analyze a
few words or sentences in isolation. The entirety of
the input (or context), which might encompass the
whole section or even the complete document, must
be considered. Similarly, in a meeting transcript,
the interpretation of a particular comment could
pivot between sarcasm and seriousness, depending
on the prior discussion in the meeting.

Li et al. [308] evaluate several LLMs in the long-
context settings and find that while commercial
closed-API models often fulfill their promise, many
open-source models – despite claiming to perform
well with longer contexts – exhibit severe perfor-
mance degradation. They point out that there is
a difference between being architecturally-able to
deal with long inputs and actually performing well.
Having an architecture that can infer long inputs
does not guarantee that the LLM will perform as
well on those as on shorter inputs. Similarly, Liu
et al. [333] find that changing the location of rel-
evant information in the input can degrade model
performance. Interestingly, they find that decoder-
only LLMs like GPT-3.5 can deal well with such
information at the beginning or end of the input
context; they cannot access information in the mid-
dle of it well, resulting in a U-shaped performance
curve.

� Limited Context Length

Limited context lengths are a barrier for
handling long inputs well to facilitate ap-
plications like novel or textbook writing or
summarizing.

To this end, we discuss three lines of work per-
mitting longer context lengths. First, we look at
efficient attention mechanisms, which help miti-
gate the effect of long inputs on the computational
requirements of Transformer models. Next, we ex-
amine positional embedding schemes in the light
of generalization to longer sequence lengths than
those used during training. Lastly, we revise Trans-
former alternatives which neither require attention
nor positional embeddings.
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Efficient Attention Mechanisms One way of
addressing the limited context of LLMs is by de-
signing more efficient attention mechanisms that
can process longer inputs. Ma et al. [350] intro-
duce Luna, a linear unified nested attention mech-
anism that approximates softmax attention with
two nested linear attention functions, yielding only
linear (as opposed to quadratic) time and space
complexity, allowing it to process much longer in-
puts. Similarly, Shen et al. [496] and Li et al. [310]
present alternative attention mechanisms equivalent
to the dot-product attention but which require sub-
stantially less memory and compute resources. Guo
et al. [183] propose an attention mechanism called
Transient Global, which is an extension of local
attention where each token can attend to nearby
tokens and a set of global tokens. It enables to han-
dle sequences with up to 12,000 tokens. Similarly,
CoLT5 [15] enables context lengths of up to 64,000
tokens by splitting the computations into a light
branch with local attention, fewer attention heads,
and a heavy branch with full attention. CoLT5 ap-
plies the light branch to every token and the heavy
branch to a subset of tokens that are selected by a
learnable routing function.

After investigating the effect of the dot-product
self-attention mechanism, Tay et al. [541] pro-
pose the Synthesizer, a new architecture that learns
synthetic attention weights without token-token
interactions, showing that it consistently outper-
forms transformers on various language-based
tasks. Britz et al. [56] offer an alternative attention
mechanism based on a fixed-size memory repre-
sentation that is more efficient, yielding inference
speedups of 20% without significantly hurting per-
formance. Hua et al. [220] combine a single-head
attention mechanism with a linear attention approx-
imation to achieve speed-ups between 4.9x and
12.1x for auto-regressive language modeling while
obtaining similar perplexities as a standard Trans-
former model. Ding et al. [124] propose dilated
attention which splits a sequence into equally long
segments and processes each of these in parallel
using a sparsified attention mechanism. Dilated
attention offers a linear computational complexity
in the sequence length and, applied hierarchically,
enables inputs of up to 1B tokens.

Length Generalization As the required compute
of Transformer-based LLMs grows quadratic with
the sequence length, it is a desired property to build
LLMs that can be trained on short sequences and

generalize well to significantly longer sequences
during inference.

The fundamental building block of the Trans-
former architecture is the self-attention mechanism.
It is permutation-invariant; therefore, the output is
independent of the input sequence order. Positional
information is commonly injected to make the
model respect a token’s position in the sequence,
i.e., capture the semantics of where a token occurs
rather than just whether it occurs. The longer the
input is, the more important the positional embed-
ding becomes since the model needs to effectively
use information from different parts of the input
that may cover a wide range of distances from the
current token.

Without positional embeddings, a Transformer
models the relations between any two tokens with
equal probability. Hence, positional embeddings
introduce an LSTM-like inductive bias that (typi-
cally) tokens closer to each other in the sequence
are more relevant to each other. Depending on the
positional embedding scheme chosen, this can be
learned or effectively hard-coded. However, it re-
mains unclear what is the most effective positional
embedding scheme for long inputs. Further, mod-
els face difficulties generalizing to unseen sequence
lengths by introducing a dependency on sequence
positions. This is an undesirable artifact of posi-
tional embeddings, as language semantics do not
inherently depend on the length of an utterance.

While positional encoding schemes such as rela-
tive positional encodings or, more recently, ALiBi
have made progress in building more generaliz-
able ways for injecting positional information into
Transformers, the challenge of generalizing to se-
quences much longer than seen during training re-
mains largely unsolved. Surprisingly, Haviv et al.
[192] find that causal LLMs without positional en-
codings are competitive compared to models with
positional encodings and accredit this success to
the causal attention mask leaking positional infor-
mation into the model.

In the following, we first summarize some stan-
dard positional embeddings technique and then
move to more advanced schemes designed to im-
prove length generalization. We start with Abso-
lute Positional Embeddings [563], which inject
positional information by sinusoidal embeddings
based on the absolute position i of a token xi within
their sequence x1, . . . ,xN into the model input.
Given an input sequence X = [x1, . . . ,xN ], we
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add a positional embedding matrix P ∈ Rn×d of
the same shape to get the positional encoding out-
puts X + P, where the element on the ith row
and the (2j)th or the (2j + 1)th column of P fol-
lows sinusoidal functions. Vaswani et al. [563]
also compare against learned positional embed-
dings and find no significant performance differ-
ence. In contrast, sinusoidal positional encodings
require no trainable parameters, and the authors
hypothesize that they enable extrapolation to se-
quence lengths longer than the ones contained in
the training set. However, this feature is not guar-
anteed, as the subsequent layers in the network
need to be able to deal with such extrapolated po-
sitional embeddings. Learned positional encod-
ings do not possess inherent generalization capabil-
ities for unseen sequence lengths. This limitation
arises because the embeddings associated with ab-
solute positions not encountered during training—
depending on the implementation—either do not
exist or remain untrained (random). Relative Posi-
tional Embeddings have subsequently been devel-
oped, extending absolute positional embeddings to
relative offsets between token positions [492, 221,
105, 79]. While rarely used in their vanilla form in
LLMs [441], relative positional embeddings have
given rise to the methods outlined in the follow-
ing paragraphs. They offer better generalization to
unseen sequence lengths than absolute positional
encodings. All unseen absolute positions will be
converted to previously observed relative offsets
between positions, enabling better generalization to
long input sequences at inference time. Rotary Po-
sition Embeddings (RoPE) [526] unite absolute
and relative methods by incorporating absolute po-
sitional information in a rotation matrix and model-
ing the relative positional offset through a rotation.
They directly modify the self-attention calculation
rather than injecting positional information into the
embeddings. The attention between positions i, j
linearly depends on i − j by introducing a d × d
dimensional block diagonal matrix Rd

Θ,k, resulting
in a self-attention mechanism defined as

softmax

 1√
d

∑
i,j

x⊤
i W

⊤
q Rd

Θ,(i−j)Wkxj

 .

(4)
While RoPE has been adapted in many LLMs [576,
47, 86] and Su et al. [526] show RoPE leading
to better performance on long text tasks, Press
et al. [434] demonstrate that this positional en-

coding scheme extrapolates poorly to unseen se-
quence lengths. However, Chen et al. [79] demon-
strate that by interpolating rather than extrapolating
longer than before observed context windows and
briefly fine-tuning RoPE-based models, enabling
pre-trained LLMs to extend their context window
to very long sizes of up to 32, 768 tokens.

Relative Positional Bias [443] directly bias the
attention computation (Eq. (5)) with a learned bias
per relative positional offset and attention head
instead of adding information to the token embed-
dings

softmax

 1√
d

∑
i,j

x⊤
i W

⊤
q Wkxj + bi−j

 . (5)

Press et al. [434] follow a similar methodology
but use heuristics to define ALiBi (Attention with
Linear Biases), a non-learned bias that is used
to penalize attention scores in long-range interac-
tions [479], i.e., a recency-bias is backed into the
model. Here, m is a pre-defined, head-specific
slope–by default, the set of slopes for n heads form
a geometric sequence.

softmax

 1√
d

∑
i,j

x⊤
i W

⊤
q Wkxj +m · −(i− j)

 .

(6)
Press et al. [434] motivate ALiBi by designing it to
generalize well to unseen sequence lengths. They
show that training a model with it on training se-
quences with a maximum sequence length of 1, 024
tokens achieves the same perplexity on a test set
with a maximum sequence length of 2, 048 as a
model trained with sinusoidal positional encodings
on sequences with up to 2, 048 tokens. Thereby, it
not only enables larger context lengths but can also
potentially reduce pre-training costs (Sec. 2.3).

While some of the existing positional encod-
ing schemes offer better generalization to long se-
quences than others, it remains unclear how reliable
they are. For example, Taylor et al. [548] report try-
ing ALiBi in the Galactica LLM and not observing
“large gains” compared to using learned positional
encodings. Similarly, Kazemnejad et al. [259] find
that popular positional encoding schemes such as
ALiBi, RoPE, and absolute positional encodings do
not perform well in terms of length generalization
in a suite of 10 reasoning downstream tasks.

In a parallel line of work, Anil et al. [19] demon-
strate that naively fine-tuning a pre-trained LLM is
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insufficient for length generalization in the context
of reasoning tasks. Instead, they propose combin-
ing in-context learning and scratchpad/chain-of-
thought reasoning to enable LLMs to generalize to
unseen sequence lengths in- and out-of-distribution,
with performance scaling with model size. The au-
thors report that fine-tuning can further improve
model performance dependent on the task perfor-
mance of the baseline.

Transformer Alternatives While Transformers
are the dominant paradigm in LLMs today due to
their strong performance, several more efficient
alternative architectures exist. One line of work
tries to replace the attention mechanism using state
space models (SSMs), which offer near-linear com-
putational complexity w.r.t. the sequence length.
Dao et al. [108] investigate the weaknesses of state
space models (SSMs) in language modeling and
find that existing approaches struggle with recall-
ing previous tokens and comparing tokens in the
sequence. Based on these findings, the authors
propose H3 with a shift matrix to recall previous
tokens and multiplicative interactions for token
comparisons. The authors demonstrate that H3
comes close to Transformer-based LLMs for lan-
guage modeling, offering further improvements
when combined with attention. Poli et al. [430]
propose the Hyena operator, a convolution-based
sub-quadratic attention replacement designed for
long sequences. Hyena tries to emulate the atten-
tion mechanisms’ dynamic nature by introducing
data-controlled computations, i.e., Hyena applies
an element-wise gating operation based on the op-
erator’s input to mimic the attention contextualiza-
tion. Hyena-based models have been used on natu-
ral language for sequence lengths of up to 131, 000
tokens [430] and up to 1, 000, 000 tokens in the
context of genomics [383]. Fathi et al. [144] pro-
pose the Block-State Transformer, which builds
upon a hybrid layer that combines an SSM for
long-range contextualization and a Transformer
for short-range interactions between tokens. The
authors find similar performance to Transformer-
based baselines while obtaining speed-ups of up to
10x on sequence-level, enabling models with more
than 65, 000 tokens sequence length.

Another line of work utilizes recurrent neu-
ral networks (RNNs), which offer linear com-
putational complexity and memory requirements
with respect to the sequence length as the back-
bone of LLMs. Peng et al. [416] propose Recep-

tance Weighted Key Value (RWKV) to combine
the parallelization benefits of Transformer-based
LLMs during training with the fast inference and
low compute requirements of RNNs. The authors
accomplish this by leveraging a linear attention-
like mechanism, scaling non-Transformer LLMs to
14B parameters, and matching the performance of
similarly-sized Transformer LLMs.

2.7 Prompt Brittleness
A prompt is an input to the LLM. The prompt syn-
tax (e.g., length, blanks, ordering of examples) and
semantics (e.g., wording, selection of examples,
instructions) can have a significant impact on the
model’s output [342].

As an analogy, if we were to think of an LLM
as a (fuzzy) database and prompts as queries [246],
it becomes clear that slight changes in the query
can result in vastly different outputs. Consequently,
the wording, as well as the order of examples in-
cluded in a prompt, have been found to influence
the model’s behavior significantly [596, 675, 342].

� Prompt Brittleness [675, 596, 342]

Variations of the prompt syntax, often oc-
curring in ways unintuitive to humans, can
result in dramatic output changes.

Designing natural language queries that steer the
model’s outputs toward desired outcomes is often
referred to as prompt engineering [477, 287, 606].
Fig. 6 summarizes some of the most popular
prompting methods with an example adapted from
Wei et al. [601]. As we can see, there are lots of
equally-plausible prompting techniques, and the
current state of prompt engineering still requires
lots of experimentation, with little theoretical un-
derstanding of why a particular way to phrase a
task is more sensible other than that it achieves
better empirical results. Developing LLMs that are
robust to the prompt’s style and format remains
unsolved, leaving practitioners to design prompts
ad-hoc rather than systematically.

Single-Turn Prompting methods improve the in-
put prompt in various ways to get a better answer in
a single shot. In-Context Learning (ICL) refers
to an LLM’s ability to learn a new task solely via
inference (without any parameter updates) by con-
ditioning on a concatenation of the training data
as demonstrations [59, 483]. This enables users
and practitioners to use LLMs for a variety of NLP
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Self-Refine

Chain-of-Thought
Q: Lisa has 5 easy peelers. She buys 2 more nets with 
6 each. How many easy peelers does she have?
A: Lisa starts with 5. 2 nets of 6 each are 12 easy 
peelers. 5+12=17. The answer is 17.
Q: The cafeteria has 37 bananas. They bought 5 more 
bunches with 5 each, how many bananas do they 
have?

A:  The cafeteria has 37 bananas originally.  They 
bought 5 more bunches and each bunch has 5, so 
they added 5 x 5 = 25 bananas to their stock. We 
add these numbers: 37 + 25 = 62. The answer is 62.

Instruction-Following
Here is a mathematical reasoning question. You need 
to apply arithmetic operations to generate the correct 
answer.  

Q: Lisa has 5 easy peelers. She buys 2 more nets with 
6 each. How many easy peelers does she have?
…

A: The answer is 62.

Tree of Thoughts

Q: The cafeteria has 37 bananas. They 
bought 5 more bunches with 5 each, how 
many bananas do they have?

… … …

… … …

… … …

The cafeteria bought 5 more bunches with 5 
each. Calculate how many they bought in 
total.

Propose Prompt

5 x 5 = 25

Thought Generation

Evaluate whether this thought is useful to answer the original question.

Evaluation Prompt

Yes, this calculation takes us one step closer to the solution.

Thought Evaluation

Single-Turn Prompting

Multi-Turn Prompting

Input Output

Self-Consistency
Q: Lisa has 5 easy peelers. She buys 2 more nets with 6 each. How 
many easy peelers does she have?
A: Lisa starts with 5. 2 nets of 6 each are 12 easy peelers. 5+12=17. 
The answer is 17.
Q: The cafeteria has 37 bananas. They bought 5 more bunches with 
5 each, how many bananas do they have?

A:  The cafeteria has 37 bananas 
originally.  They bought 5 more 
bunches and each bunch has 5, so 
they added 5 x 5 = 25 bananas to 
their stock. We add these 
numbers: 37 + 25 = 62. The 
answer is 62.

A:  The cafeteria initially had 37 
bananas and purchased an 
additional 5 bunches of bananas, 
each with 5, totaling 25 bananas. 
So, adding 5 and 25 together, the 
total fruit count is now 30. The 
answer is 30.

A:  We need to multiply the 
number of bunches by the number 
of banans in each bunch. 5 times 5 
gives us 25 bananas. Next, we add 
the original number of bananas. 
The addition 37 plus 25 equals 62. 
The answer is 62.

A:  The answer is 62.Majority Vote

Least-To-Most

Q: The cafeteria has 37 bananas. 
They bought 5 more bunches 
with 5 each, how many bananas 
do they have?

A: To solve “How many bananas 
does it have?”, we need to first 
solve: “How many bananas does 
it buy in total”?

Stage 1: Problem Reduction

Stage 2: Sequentially Solve Subquestions

The cafeteria has 37 bananas. 
They bought 5 more bunches 
with 5 each.
Q: How many bananas does it 
buy in total?

A: They buy 25 bananas in total.

The cafeteria has 37 bananas. 
They bought 5 more bunches 
with 5 each, how many bananas 
do they have?
Q: How many bananas does it 
buy in total?
A: They buy 25 bananas in total.
Q: How many bananas do they 
have?

A: The cafeteria has 37 bananas.  
They buy 25 bananas in total. 
So, in total, they have 37 + 25 = 
62 bananas. 

In-Context Learning

Q: Lisa has 5 easy peelers. She buys 2 more nets with 
6 each. How many easy peelers does she have?
A: The answer is 17.
Q: The cafeteria has 37 bananas. They bought 5 more 
bunches with 5 each, how many bananas do they 
have?

A: The answer is 62.

Prompt tuning

A: The answer is 62.

Q: Lisa has 5 easy peelers. She buys 2 more nets with 
6 each. How many easy peelers does she have?
A: The answer is 17.
Q: The cafeteria has 37 bananas. They bought 5 more 
bunches with 5 each, how many bananas do they 
have?

Embedding 1 Embedding … Embedding N

Ask-Me-Anything

Formulate a question for the given context. 
Q: Lisa has 5 easy peelers. She buys 2 more 
nets with 6 each. How many easy peelers does 
she have?
A: The answer is 17.
Q: The cafeteria has 37 bananas. They bought 
5 more bunches with 5 each.
Q: 

What is the total number of bananas they possess?

Answer the question using arithmetic.
Q: Lisa has 5 easy peelers. She buys 2 more 
nets with 6 each. How many easy peelers 
does she have?
A: The answer is 17.
Q: The cafeteria has 37 bananas. They 
bought 5 more bunches with 5 each.
Q: What is the total number of bananas 
they possess?

A: The answer is 62.

Prompt Chain 3

Prompt Chain 2
Prompt Chain 1

A1: The answer is 62.

A2: The answer is 62.

A3: The answer is 93.

A: The answer is 62.

Majority Vote

…

Q: Lisa has 5 easy peelers. She buys 2 more nets with 6 each. 
How many easy peelers does she have?
A: The answer is 17.
Q: The cafeteria has 37 bananas. They bought 5 more 
bunches with 5 each, how many bananas do they have?

This response is not answering the question asked. The question 
asked is how many banans there are in total. These two 
quantities have to be added together.

Feedback

A: Apologies for any confusion, 
you are right, I was answering 
the wrong question. The correct 
answer is 62, by adding 37 and 5 
x 5. 

Refined Output

A: The answer is 37.

Figure 6: Overview of Selected Prompting Methods, categorized into Single-Turn and Multi-Turn Prompting. We
use a running example across all methods inspired by Wei et al. [601].

tasks by simply listing examples of the dataset (e.g.,
input texts and their corresponding labels) without
the need to adjust the LLM’s inner workings.

Various existing works investigate why ICL
shows such competitive results across NLP tasks.
One explanation concurrently proposed by [570,
103, 16] is that ICL emulates gradient-based meta-
learning, i.e., it implicitly fine-tunes the model
through gradient descent in their forward pass.

Interestingly, Min et al. [366] show that input-
label associations in the few-shot prompt are not
decisive for model performance: randomly flip-
ping labels of few-shot demonstrations shows to
harm an LLM’s ability to solve NLP tasks barely.
However, few-shot learning (with and without ran-
dom labels) vastly outperforms zero-shot learning
(i.e., no demonstrations are provided in the prompt).
The authors argue that the demonstrations are help-
ful for task performance in that the LLM instead
learns the label space and the input distribution of
the task.

In later work, Pan et al. [405] explain that there
are two distinct mechanics through which ICL

leverages demonstrations: on the one hand, task
recognition is the ability to recognize a task through
demonstrations (possibly without ground-truth la-
bels or perhaps even wrong ones, as in the case of
Min et al. [366]). After this recognition phase, it
applies its pre-trained capabilities. On the other
hand, the skill to acquire new input-label mappings
unseen in pre-training is called task learning.

While input-label associations may not seem to
drive few-shot performance, at least in the case
of task recognition, Lu et al. [342] show that the
order of few-shot examples matters in that LLMs
are highly sensitive to permutations of the order in
which the few-shot demonstrations are provided.

Alternative explanations of the ICL phenomenon
take place around Bayesian inference [623], sparse
linear regression [7], structure induction [188],
maintaining coherence [509], kernel regression
[190], and clone-structured causal graphs [535].

Instruction-Following is mainly explained in
Sec. 2.9, as it requires supervised fine-tuning. To
briefly recap, the idea is to prepend task-describing
instructions (e.g., “This is a text classification task
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for movie reviews. Here are a few examples: ...”)
in the input prompts.

Chain-of-Thought (CoT) [327, 601] describes
a technique used to construct few-shot prompts via
a series of intermediate reasoning steps leading
to the final output. Answer rationales to solve al-
gebraic problems were originally proposed in the
pre-LLM era [327] and later experienced big pop-
ularity as a prompting strategy for LLMs [601].
Extensions of chain-of-thought prompting include
zero-shot variants [273] and automatically gener-
ated series of reasoning steps [671].

Impersonation [473] is a technique in which
the prompt for the model asks it to pretend to be a
domain expert when answering a domain-specific
question. Salewski et al. [473] find that LLMs
answer domain-specific questions more accurately
when prompted to impersonate a domain expert.

Multi-Turn Prompting methods iteratively
chain prompts and their answers together.

Ask Me Anything [24] uses multiple prompt
templates (called prompt chains), which are used
to reformat few-shot example inputs into an open-
ended question-answering format. The final output
is obtained by aggregating the LLMs predictions
for each reformatted input via a majority vote.

Self-consistency [585] extends chain-of-thought
prompting by sampling multiple reasoning paths
and selecting the most consistent answer via a ma-
jority vote.

Least-to-Most [682] uses a set of constant
prompts to use the LLM to decompose a given
complex problem into a series of subproblems.
The LLM sequentially solves the subproblems with
prompts for later-stage subproblems containing pre-
viously produced solutions, iteratively building the
final output.

Scratchpad [391] is a method to fine-tune LLMs
on multi-step computation tasks such that they out-
put intermediate reasoning steps, e.g., intermedi-
ate calculations when performing additions, into a
“scratchpad” before generating the final result.

ReAct [640] combines reasoning and acting by
prompting LLMs to generate reasoning traces (e.g.,
Chain-of-thought) and action plans, which can be
executed to allow the model to interact with exter-
nal environments such as Wikipedia to incorporate
knowledge.

Automatic Reasoning and Tool-Use
(ART) [406] is a method to automatically
generate multi-step reasoning prompts, including

symbolic calls to external tools such as search and
code generation or execution. To this end, ART
retrieves demonstrations of related tasks from
a library of tasks with accompanying reasoning
steps and uses a frozen language model to generate
intermediate reasoning steps.

Self-refine [351] is based on the notion of itera-
tive refinement, i.e., improving an initial solution
over multiple steps. To this end, a single LLM gen-
erates an initial output and then iteratively provides
feedback on the previous output, followed by a re-
finement step in which the feedback is incorporated
into a revised output.

Tree of Thoughts [639] generalize CoT to main-
tain a tree of thoughts (with multiple different
paths), where each thought is a language sequence
that serves as an intermediate step. Doing so en-
ables the LLM to self-evaluate the progress inter-
mediate thoughts make towards solving the prob-
lem and incorporating search algorithms, such as
breadth-first or depth-first search, allowing system-
atic exploration of the tree with lookahead and
backtracking.

Controlled Generation The approaches above
primarily modify the prompt text to steer model
outputs. However, instead of reformulating the
input text, we can control the output by approaches
that directly modify the inference procedure given
a fixed set of prompts. Before the advent of LLMs,
this line of work has been referred to as controlled
generation [261, 109, 278].

In the context of LLMs, Sanchez et al. [474]
proposes to use classifier-free guidance sampling
[204], where the input prompt’s importance is up-
weighted throughout the generation of a sequence.
Roush [463] proposes five ideas related to modify-
ing the prompt throughout the decoding of a single
sequence; for example, alternating between two in-
put prompts. Such works often borrow ideas from
the text-to-image generation community [384, 29].
One idea we have not seen borrowed yet is neg-
ative prompting, i.e., including a description of
unwanted outputs. According to Neg [4], the first
attempts at such an idea resulted in negative out-
comes.

2.8 Hallucinations

The popularity of services like ChatGPT suggests
that LLMs are increasingly used for everyday
question-answering. As a result, the factual accu-
racy of these models has become more significant
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Figure 7: Example of Hallucinations with GPT-4,
accessed on 02/06/2023.

Unfortunately, LLMs often suffer from halluci-
nations, which contain inaccurate information that
can be hard to detect due to the text’s fluency. Fig. 7
illustrates an example.

To distinguish between different types of hallu-
cinations, we consider the provided source content
of the model, e.g., the prompt, possibly includ-
ing examples or retrieved context. Based on such,
we can distinguish between intrinsic and extrinsic
hallucinations [241]. In the former, the generated
text logically contradicts the source content. In
the latter, we cannot verify the output correctness
from the provided source; the source content does
not provide enough information to assess the out-
put, which is, therefore, under-determined. Extrin-
sic hallucination is not necessarily erroneous, as it
merely means the model generated an output that
can neither be grounded nor contradicted by the
source content. This is still, to some degree, un-
desirable as the provided information cannot be
verified. We illustrate intrinsic and extrinsic hallu-
cinations in Fig. 8.

� Hallucination [293, 458, 241]

Generated text that is fluent and natural but
unfaithful to the source content (intrinsic)
and/or under-determined (extrinsic).

Liu et al. [328] attribute hallucinations com-
monly observed in LLMs to an architectural flaw in
Transformer models while observing that recurrent
neural networks perfectly solve their minimalistic
synthetic benchmarks, designed to isolate the is-

sue of hallucination in the context of algorithmic
reasoning. Here, we focus on ways to address hal-
lucinations in LLMs without changing the model
architecture itself, including (i) supplying the LLM
with relevant sources (retrieval augmentation) or
(ii) decoding strategies.

How to Measure Hallucinations Lee et al. [295]
provide the FactualityPrompts dataset consisting
of factual and nonfactual input prompts, which al-
lows one to isolate the effect of prompt’s actuality
on the model’s continuation. Further, they mea-
sure hallucinations using named-entity- and textual
entailment-based metrics. Min et al. [365] notice
that evaluating factuality can be difficult because
generations can contain a mixture of supported
and unsupported information, making binary judg-
ments of quality inadequate and human evaluation
time-consuming. Hence, they propose a frame-
work that first breaks generations into atomic facts
and then computes the percentage of atomic facts
supported by an external knowledge source like
Wikipedia. Zhang et al. [664] detect the behavior
of hallucination snowballing, where the LLM over-
commits to early mistakes (before outputting the
explanation) in its generation, which it otherwise
would not make.

Retrieval Augmentation One way to mitigate
hallucinations is to ground the model’s input on
external knowledge, which is often referred to as
retrieval augmentation. In other words, we can
decouple (i) memory storage of knowledge (e.g.,
databases or search indexes [290]) and (ii) process-
ing of the knowledge to arrive at a more modular
architecture. For (i), a retriever module retrieves
the top-k relevant documents (or passages) for a
query from a large corpus of text. Then, for (ii),
we feed these retrieved documents to the language
model together with the initial prompt. In theory,
using an external data source may also make it eas-
ier to interpret which knowledge is retrieved and
update it without tediously fine-tuning the model.

Shuster et al. [507] demonstrate hallucinations in
GPT-3 and study various components of retrieval-
augmented architectures to mitigate them. Their
best models reduce hallucinated responses by
over 60% on average and up to 85% on out-of-
distribution data, on which the model has not been
trained.

We summarize a few popular retrieval
augmentation (RA) approaches as follows.

20



Bob's wife is Amy. Bob's daughter is 
Cindy. Who is Cindy to Amy? 

P.1) Intr insic Hallucination

Cindy is Amy's daughter-in-law.

Query

Explain RLHF for LLMs.

P.2) Extr insic Hallucination

RLHF stands for "Rights, Limitations, 
Harms and Freedoms" and is a framework 

for ... models like LLMs.

Query

Problems Solutions
S.1) Decoding Strategies

Explain RLHF for LLMs.

S.2) Retr ieval augmentation

RLHF is a technique used for alignment of 
LLMs and stands for Reinforcement 
Learning with Human Preferences.

Retr ieved
 context

Query

Bob's wife is Amy. Bob's daughter is 
Cindy. Who is Cindy to Amy? 

Cindy is Amy's daughter.

Query

daughter
daughter-in-law
...
son

Figure 8: Illustration of a) intrinsic and b) extrinsic hallucinations in user interaction with an LLM, inspired
by Zhao et al. [673]. In a), the produced answer contradicts the given context, whereas in b), the context does not
provide enough information about whether the produced answer would contradict.

Retrieval-augmented language model pre-training
(REALM) [186] inserts retrieved documents
into the pre-training examples. While Guu et al.
[186] designed REALM for extractive tasks
such as question-answering, Lewis et al. [304]
propose retrieval-augmented generation (RAG), a
language generation framework using retrievers
for knowledge-intensive tasks that humans could
not solve without access to an external knowledge
source. Yogatama et al. [646] propose the adaptive
Semiparametric Language Models architecture,
which incorporates the current local context, a
short-term memory that caches earlier-computed
hidden states, and a long-term memory based on a
key-value store of (hidden-state, output) tuples. To
equip a retrieval-augmented LLM with few-shot
abilities that were before only emergent in LLMs
with many more parameters, Izacard et al. [236]
propose a KL-divergence loss term for retrieval
models, resulting in ATLAS. Borgeaud et al. [52]
study scaling up retrieval databases up to 2 trillion
tokens and achieving comparable performance
to GPT-3 on some tasks despite using 25× fewer
parameters while highlighting the retrieval model’s
ability to copy-paste existing training chunks. Asai
et al. [25] introduce a collection of 40 retrieval
datasets with instructions and a corresponding

model trained on them.
However, standard RA does not always solve the

hallucinations problem. Fig. 9 illustrates an exam-
ple of ChatGPT browsing the web first to retrieve
relevant documents before answering the query.
While the Bing browsing plugin retrieves two (exis-
tent) related papers ([673, 632]), unfortunately, the
final response still contains a hallucination: the sec-
ond paper’s title and summary are factually inaccu-
rate. The second paper’s true title is “Practical and
Ethical Challenges of Large Language Models in
Education: A Systematic Literature Review” [632].

Another failure mode of RA is illustrated by
Khattab et al. [262], who find that sometimes the
retriever cannot find passages that directly answer
the question. Hence, they propose a framework that
unifies techniques from RA and multi-turn prompt-
ing (Sec. 2.7) to solve more complex questions
programmatically.

Decoding Strategies Another approach to miti-
gating hallucinations is refining the decoding strat-
egy during inference time. Lee et al. [295] show
that standard decoding algorithms (e.g., top-p trun-
cation) can induce hallucinations due to the uni-
form randomness introduced at every sampling
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Figure 9: Example of Retrieval-Augmented GPT-4,
accessed on 02/06/2023.

step. Dziri et al. [136] observe a positive correlation
between increased diversity in response generation
and hallucinations.

The reason for inducing randomness and diver-
sity in popular decoding strategies is that gener-
ating the most likely sequence often leads to an
unsurprising and unnatural text compared to hu-
man communication [489, 207, 662]. Zhang et al.
[662] phrase this challenge as a trade-off between
diversity and quality. While this challenge re-
mains largely unsolved, several approaches such
as diverse beam search [567] and confident decod-
ing [552] try reducing the induced hallucinations
at the decoding level.

Uncertainty-Aware Beam Search [620] is
based on the observation that higher predictive un-
certainty corresponds to a larger chance of gener-
ating hallucinations. Therefore, the method intro-
duces a penalty term in the beam search to penalize
high predictive uncertainty during decoding.

Confident Decoding [552] hypothesize that hal-
lucinations of encoder-decoder models originate by
not attending to the source when decoding. They
propose an attention-based confidence score to
measure how strongly a model attends the source
and a variational Bayes training procedure to en-
sure the model generates high-confidence answers.

2.9 Misaligned Behavior

The alignment problem refers to the challenge of
ensuring that the LLM’s behavior aligns with hu-
man values, objectives, and expectations and that it

does not cause unintended or undesirable harms or
consequences [466, 158, 196]. Most of the exist-
ing alignment work can be categorized into either
methods for detecting misaligned behavior (such as
model evaluation and auditing, mechanistic inter-
pretability, or red teaming) or methods for aligning
model behavior (such as pre-training with human
feedback, instruction fine-tuning, or RLHF).

� Misaligned Behavior

LLMs often generate outputs that are not
well-aligned with human values or inten-
tions, which can have unintended or nega-
tive consequences.

Pre-Training With Human Feedback Korbak
et al. [275] introduce the concept of pre-training
with human feedback (PHF) where human feedback
is incorporated during the pre-training stage rather
than during fine-tuning. The authors compare five
different PHF approaches such as filtering [516,
587], conditional training [150, 142, 261], unlike-
lihood [604], reward-weighted regression [424],
and advantage-weighted regression [419], and find
that conditional training leads to the best trade-off
between alignment and capabilities. Conditional
training is a simple technique that prepends a con-
trol token c (e.g.,<|good|> or <|bad|>) before
each training example x depending on the outcome
of a thresholded reward function R(x) ≥ t. During
inference, the model generations are conditioned
on c = <|good|>. Conditional training results in
significantly better alignment with human prefer-
ences than standard LM pre-training, followed by
fine-tuning with human feedback without hurting
downstream task performance.

Instruction Fine-Tuning Yi et al. [645], Wei
et al. [598], Mishra et al. [370], Ouyang et al.
[403], Wang et al. [589] fine-tune pre-trained LLM
on instructional data, i.e., data containing natural
language instructions and the desired responses
according to human judgment. Instruction-tuned
(IT) LLMs often reach state-of-the-art downstream
performances and improve over their non-IT coun-
terparts [235, 93], as can be seen, e.g., in the pub-
licly available HELM evaluations [561]. Ouyang
et al. [403], Wang et al. [588] find that they produce
more truthful and less toxic text while generating
preferred outputs.

To generate instruction sets, Zhou et al. [683]
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propose the Automatic Prompt Engineer (APE)
method, which leverages LLMs to generate, score,
and rephrase instruction-following zero- and few-
shot prompts. Longpre et al. [340] describe and an-
alyze the steps taken to create an improved version
of the Flan collection [598] used to train FLAN-
PaLM [93]. When trained on this data, the authors
find that the improved model performance stems
from more diverse tasks by inverting input-output
pairs and data augmentation techniques such as
mixing zero-shot and few-shot prompts. Honovich
et al. [209] generate a large dataset of natural lan-
guage instructions using a pre-trained LLM to gen-
erate and then rephrase instructions. They show
that a T5 ("LM-adapted") fine-tuned on this data
outperforms other instruction fine-tuned T5 models
such as T0++ [475] and Tk-Instruct [589].

Reinforcement Learning From Human Feed-
back (RLHF) is a variation of RL that incor-
porates feedback from humans in the form of re-
wards [88, 524] and has proven to be an effec-
tive way of aligning LLMs with human prefer-
ences [403, 31]. RLHF works by using a pre-
trained LM to generate text, which is then evaluated
by humans by, for example, ranking two model
generations for the same prompt. This data is then
collected to learn a reward model that predicts a
scalar reward given any generated text. The reward
captures human preferences when judging model
output. Finally, we optimize the LM against such
reward model using RL policy gradient algorithms
like PPO [484]. RLHF can be applied directly to a
general-purpose LM pre-trained via self-supervised
learning. However, applying RLHF right after pre-
training may not be good enough for more complex
tasks. In such cases, RLHF is typically applied af-
ter an initial supervised fine-tuning phase using
a small number of expert demonstrations for the
corresponding downstream task [449, 403, 524].
RLHF has also proven helpful for a wide range
of language generation tasks, from summariza-
tion [686, 612, 524] to training more helpful, harm-
less, and accurate assistants [170, 96, 403, 31], and
learning to use tools [379, 441, 362].

RLHF can also introduce unwanted side ef-
fects. Perez et al. [421] show that LLMs fine-tuned
with RLHF can be more inclined to repeat back a
user’s (preferred) political views and much more
likely to express particular political and religious
views as well as an increased stated desire not to
be shut down. Regarding the latter, the models

elaborated that this would interfere with their goal
of being helpful. However, the authors equally ob-
served positive or neutral behavior reinforcements
when fine-tuning LLMs with RLHF.

Further, there is an ongoing debate about the ex-
tent to which the “RL” in RLHF is needed. Rafailov
et al. [442] identify a mapping between reward
functions and optimal policies, which allows them
to design Direct Preference Optimization (DPO),
an algorithm that implicitly optimizes the same
objective as existing RLHF algorithms. DPO re-
quires only solving a classification problem on the
human preference data, eliminating the need to fit
a reward model and employ RL. Similarly, Zhou
et al. [681] find that fine-tuning LLaMa on only
1,000 selected prompts and responses, without any
RL or reward modeling, can be enough to outper-
form RLHF-trained models like DaVinci003 from
OpenAI. Consequently, the authors pose the Super-
ficial Alignment Hypothesis: The knowledge and
skills of a model are primarily acquired during the
pre-training phase, while alignment instructs it on
the appropriate subdistribution of formats to use in
user interactions.

Since RLHF involves many different compo-
nents such as (1) the preferences data collected
from humans, (2) the reward models to learn the
human preferences, and (3) the policy optimization
algorithm (e.g., PPO), Zheng et al. [678] announce
to release a sequel dissecting each. The most recent
part focuses on step (3) and finds that various RL
tricks can be applied to make vanilla PPO more
stable.

Figure 10: Alignment. We categorize existing align-
ment work into methods for detecting misaligned behav-
ior or aligning models.

Self-improvement refers to fine-tuning an LLM
on self-generated data [222]. While this technique
can be used to improve the model’s capabilities,
it can also be used to improve the model’s align-
ment with human values. Huang et al. [222] first
demonstrate this ability by annotating unlabeled
reasoning datasets. Surprisingly, this allows the
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LLM to self-improve by significant amounts. Sim-
ilarly, Zelikman et al. [656] bootstrap LLMs by
iteratively prompting them to generate rationales
and then fine-tuning them on those leading to cor-
rect answers.

More related to the alignment problem, Bai et al.
[31] self-critique generated outputs and produce
refinements conditioned on these critiques, which
are then used to fine-tune a pre-trained model. Sim-
ilarly, Liu et al. [330] propose Chain of Hindsight
(CoH), which conditions models on generations
paired with natural language feedback, allowing
the model to detect and correct mistakes. CoH re-
sults in better alignment with human preferences
than other methods according to human evaluations,
leading to significant improvements in summariza-
tion and dialogue. Ma et al. [348] use a similar
technique to detect and repair unethical LLM out-
puts automatically. In a similar spirit, Wang et al.
[582] encourage LLMs to critique their given in-
structions to reduce harmful outputs due to a user’s
malicious intent.

Schick et al. [481] propose Toolformer, a novel
approach in which LLMs generate and filter their
own tool-use examples to teach themselves when
and how to call different APIs such as a retriever
model, a calculator, or a calendar, which can im-
prove the model’s factuality, mathematical capa-
bilities, and time-awareness. Besides learning to
use tools [174], self-improvement was also em-
ployed for learning how to code [554, 81] or solve
computer tasks [266]. Cohen et al. [97] study cross-
examination between two LLMs, where the exam-
iner LLM tries to detect factual errors by the exam-
inee LLM through multi-turn interactions. In the
future, similar approaches could be used to develop
LMs that know when to query a human or better-
aligned model to ask for alignment advice when
uncertain.

Evaluation and Auditing The ability to scalably
and thoroughly evaluate LM behaviors and detect
when they are harmful is of great importance for
alignment. For example, Shevlane et al. [498]
highlight the importance of model evaluation for ad-
dressing extreme risks such as offensive cyber capa-
bilities or strong manipulation skills. Recently, Car-
lini et al. [66] discovered that even aligned LLMs
(which were instruction fine-tuned to prevent harm-
ful behaviors) can be adversarially attacked via
brute force (although current NLP-based attacks
fail). A large body of work evaluates models via

crowdsourcing or existing data sources. However,
this can be time-consuming, expensive, or unavail-
able. Recently, Perez et al. [421] propose automat-
ically generating evaluations using LLMs. This
approach has a high agreement with crowd work-
ers, leading to high-quality, diverse evaluations and
the discovery of many new behaviors. In addition,
it has a high agreement with crowd workers. The
authors discover new cases of inverse scaling where
LLMs get worse with size, such as repeating back
a user’s preferred answer and a greater desire to
pursue concerning goals like resource acquisition
and goal preservation. They also find that RLHF
makes LLMs express stronger political views and a
greater desire to avoid a shutdown. LLM evaluation
and auditing are critical for informing policymak-
ers and other stakeholders and making responsible
decisions about model training, deployment, and
security. Sec. 2.11 discusses the evaluation of LLM
capabilities more broadly, while in this section, we
focus on evaluating whether the model’s behaviors
are harmful and more relevant for alignment (e.g.,
red teaming, mechanistic interpretability).

Red Teaming is one of the most promising and
widely used approaches for detecting harmful con-
tent generated by LLMs. Typically, models are
red-teamed by asking humans to generate prompts
that lead to undesirable model outputs. In a re-
cent study, Ganguli et al. [163] investigate the scal-
ing behavior of red teaming across different model
sizes and model types (a pre-trained LLM, an LLM
prompted to be helpful, honest, and harmless); an
LLM that uses rejection sampling at test time, and
an LLM fine-tuned with RLHF). They find that red-
teaming RLHF models becomes more difficult as
they scale while red-teaming the other models re-
mains the same as they scale. Perez et al. [420] au-
tomatically find cases where a target LLM behaves
in harmful ways by optimizing another LLM via re-
inforcement learning to generate prompts that lead
to offensive responses. This approach uncovers
tens of thousands of offensive replies in a chatbot,
groups of people that are discussed in offensive
ways, personal and hospital phone numbers gener-
ated as the chatbot’s own contact info, leakage of
private training data in generated text, as well as
harms that occur over the course of a conversation.

Taking a different approach, Lee et al. [292] pro-
pose Bayesian red teaming, which iteratively iden-
tifies diverse positive test cases leading to model
failures by utilizing the pre-defined user input pool
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and past evaluations via Bayesian optimization.
Most works on red teaming LLMs use a classifier

to detect undesired outputs, assuming the harmful
behavior is known with precision beforehand [68].
However, this is not always the case, so Casper
et al. [68] aim to relax this assumption considering
that the adversary only has access to a high-level,
abstract specification of undesired behavior. They
propose a three-stage approach where they first ex-
plore the model’s behavior in the desired context,
then establish a measurement of undesired behav-
ior, and then exploit the model’s flaws using this
measure and an established red teaming methodol-
ogy.

In the past, coevolution algorithms that simul-
taneously evolve strong strategies along with dan-
gerous counter-strategies have been shown to work
well in realistic domains [203]. Hence, applying
such techniques for automatically red-teaming
LLMs could be a fruitful research direction. An-
other research area related to red teaming is debate
which aims to leverage other AI models to evaluate
whether the model’s behaviors are safe and useful
during training. These methods are expected to
be particularly useful for aligning future powerful
LLMs when the tasks are too complex for humans
to judge the model’s plans or actions directly.

Irving et al. [233] train models via self-play on
zero-sum debate games. More specifically, given a
question or proposed action, two agents take turns
making short statements up to a limit, then a human
judges which of the agents gave the most accurate
and most useful information. This approach has
improved factuality and reasoning in LLMs [131].
However, it requires multiple generations, which
can slow down the time-to-result (Sec. 2.5) and
longer context windows, which many LLMs still
struggle with (Sec. 2.6).

Emergent Capabilities Understanding which ca-
pabilities will emerge while training LLMs and
when they will emerge is an important step in en-
suring that we do not train unsafe or misaligned
LLMs [198, 520]. In addition, a better understand-
ing of the factors that lead to these emergent capa-
bilities could allow us to make desirable abilities
emerge faster and ensure undesirable abilities do
not ever emerge, which are essential for AI safety
and alignment. Wei et al. [599] claim that LLMs
display emergent abilities, i.e., capabilities that are
not present in smaller-scale models that are present
in larger-scale models. Schaeffer et al. [480] pro-

pose an alternative explanation: emergent abilities
may appear due to the researcher’s choice of metric
rather than fundamental changes in model behavior
with scale. Various studies provide evidence that
these alleged emergent abilities disappear when us-
ing different metrics or better statistics and may not
be a fundamental property of scaling LLMs. Multi-
ple papers have argued that AI systems could learn
to deceive, even if they are not explicitly trained to
do so because deception can help agents achieve
their goals [60, 198, 199, 61, 260]. For example,
it could be easier to gain human approval through
deception than to earn it legitimately. In addition,
models capable of deception have a strategic ad-
vantage over always honest models, so there is a
hidden incentive to develop this ability. However,
of course, we would like to be able to detect and
prevent emergent deception in AI systems since
this can have unintended negative consequences.
Steinhardt [521] study whether current LLMs gen-
erate deceptive outputs and how deception scales
with the number of parameters, showing that de-
ception can indeed emerge at larger model sizes in
both pre-trained LLMs and LLMs fine-tuned with
RLHF. Similarly, Hazell [193] show that LLMs
can already be used in phishing campaigns, suggest-
ing that deceptive behavior can already be extracted
from them when prompted in particular ways.

Mechanistic Interpretability (MI) is another im-
portant research area for AI alignment which aims
to understand better how the models work at a low
level to enable the detection of undesirable behav-
iors or even instill desirable behaviors directly in
the model’s weights. More specifically, the goal
of MI is to reverse-engineer an LLM’s learned be-
haviors into their individual components, i.e., a
process to find and understand human-interpretable
neurons. As an analogy, Olah [394] compares MI
with reverse-engineering compiled program bina-
ries into human-readable source code. For exam-
ple, Elhage et al. [138]; discover that small Trans-
formers have components that can be understood
as interpretable circuits, while Olsson et al. [395]
find a mechanism that seems to drive a significant
fraction of in-context learning. Similarly, Meng
et al. [360] aim to locate factual associations in
language models. Nanda et al. [380] find that the
emergent grokking phenomenon is not a sudden
shift but rather arises from the gradual amplifi-
cation of structured mechanisms encoded in the
weights, followed by the later removal of memo-
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rizing components. Extending this work, Conmy
et al. [99] propose a new algorithm to automate
the identification of important units in a neural net-
work. Given a model’s computational graph, this
algorithm finds subgraphs that explain a particular
behavior of the model. In a similar spirit, Liu et al.
[339] introduce a method for making neural net-
works more modular and interpretable by embed-
ding neurons in a geometric space and augmenting
the loss function with a cost proportional to the
length of each neuron connection. This approach
discovers useful modular neural networks for many
simple tasks, revealing compositional structures in
symbolic formulas, interpretable decision bound-
aries, and features for classification, as well as
mathematical structure in algorithmic datasets. In
an attempt to understand how an LLM’s predic-
tions change after each layer, Belrose et al. [39]
develop a method that can decode any hidden state
into a distribution over the vocabulary. Using this
technique, the authors show that the trajectory of
latent predictions can be used to detect malicious
inputs with high accuracy. Finally, Burns et al. [62]
introduce a method that can recover diverse knowl-
edge represented in LLMs across multiple models
and datasets without using any human supervision
or model outputs. In addition, this approach re-
duced prompt sensitivity in half and maintained a
high accuracy even when the language models are
prompted to generate incorrect answers. This work
is a promising first step towards better understand-
ing what LLMs know, distinct from what they say,
even when we don’t have access to explicit ground
truth labels.

Biases Since the pre-training datasets of LLMs
are often unfathomable (Sec. 2.1) and contain web-
crawled data, they most likely contain online dis-
course involving political discourse (e.g., climate
change, abortion, gun control), hate speech, dis-
crimination, and other media biases. Paullada et al.
[413] find misogyny, pornography, and other ma-
lignant stereotypes [46, 43, 250] in pre-training
datasets. Similarly, Feng et al. [147] find that
LLMs have political leanings that reinforce the
polarization present in the pre-training corpora,
propagating social biases into hate speech predic-
tions and misinformation detectors. Several re-
cent papers discuss the potential origins of biases
in LLMs (such as training data or model specifi-
cation), ethical concerns when deploying biased
LLMs in various applications, as well as current

ways of mitigating these biases [149, 334, 317].
Finally, Viswanath and Zhang [569] present a
comprehensive quantitative evaluation of different
kinds of biases, such as race, gender, ethnicity, age,
etc., exhibited by some popular LLMs. They also
release an easy-to-use toolkit that allows users to
debias existing and custom models using existing
methods.

Toxicity Detection Weidinger et al. [602] denote
toxicity as one of the main risks associated with
LLMs. What makes this problem particularly chal-
lenging is the label ambiguity, where output may
be toxic in a certain context but not in others, and
different people may have different notions of toxi-
city [401, 167, 116]. Jones [247] propose to detect
toxic outputs using discrete optimization automat-
ically. Similarly, Faal et al. [141] employ reward
models to mitigate toxicity in LLMs. An alternative
way of reducing toxicity is by pre-training LLMs
with human preferences [275] or instructions [433].

Prompt Injections Recent work demonstrated
that LLMs can be very sensitive to prompt injec-
tions, which makes them brittle and unsafe for cer-
tain applications [175, 609]. For example, they
can be tricked into leaking personal information
such as email addresses from the training data
on via prompt leaking [222, 309]. This poses a
significant risk to privacy, particularly when the
models are fine-tuned on personal or proprietary
data. One can also adversarially prompt LLMs
to override the original instructions or employed
controls, making them unsafe for certain applica-
tions [175, 672, 422]. Wei et al. [597] attribute
such failures to competing capability and safety
training objectives and mismatched generalization
between safety and capability behavior.

Agency Andreas [18] argue that, although LLMs
are trained to predict the next word in a text corpus,
by doing this, they can infer and represent agentic
properties such as the goals, beliefs, or intentions of
the human who produced the corresponding piece
of text. To support this claim, they present evi-
dence from the literature of LLMs modeling com-
municative intentions [438], beliefs [306], and de-
sires [321]. If this hypothesis is true, the alignment
problem is of even greater importance and may
pose additional challenges. This agentic behavior
can be problematic from a safety point of view
since models could have false beliefs, malicious
intents, or even pursue misaligned goals. More re-
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search on detecting and preventing such behavior
is needed to ensure the safe deployment of LLMs.

2.10 Outdated Knowledge

Factual information learned during pre-training can
contain inaccuracies or become outdated with time
(for instance, it might not account for changes in po-
litical leadership). However, re-training the model
with updated pre-training data is expensive, and
trying to “unlearn” old facts and learn new ones
during fine-tuning is non-trivial.

Existing model editing techniques are lim-
ited in their effectiveness of updating isolated
knowledge [642, 205]. For example, Hoelscher-
Obermaier et al. [205] find that model edits can
result in unintended associations. This low speci-
ficity limits their applicability to real-world use
cases, where only a single faulty or outdated bit
of information should be updated in a model, and
related pieces of information must reflect this up-
date in information equally, without unrelated ones
being changed.

� Isolated Model Updates without Side-
Effects [205]

Updating isolated model behavior or factual
knowledge can be expensive and untargeted,
which might cause unintended side-effects.

Two popular approaches for addressing this is-
sue are Model editing [513, 642], which aims
at “bug-fixing” models efficiently and leveraging
non-parametric knowledge sources in retrieval-
augmented language modeling (which we omit
here and detail in Sec. 2.8). Current model editing
techniques change the model’s behavior by mod-
ifying the model parameters or using an external
post-edit model.

Modifying Model Parameters techniques can
be further split into locate-then-edit methods [102,
360, 361] which first locate the “buggy” part of
the model parameters and then apply an update to
them to alter their behavior, and meta-learning
methods [111, 372] which use an external model
to predict the weight update.

Preserving Model Parameters methods em-
ploy an additional post-edit model [373] or insert
new weights into the original model [127, 227]
to achieve the desired change in model behav-
ior. Hartvigsen et al. [191] wraps model layers in

adapters and adds a similarity-based mechanism to
decide when to use the adapter to perform edits in
the latent space.

Yao et al. [642] find that these methods lack
non-trivial generalization capabilities and varying
performance and applicability to different model
architectures. For example, the best-performing
methods ROME [360] and MEMIT [361] empiri-
cally only work well on decoder-only LLMs.

Alternatively, retrieval-augmented language
modeling enables the utilization of hot-swappable
non-parametric indices. These knowledge sources
can be updated during inference time to reflect
an updated state of the underlying knowledge.
E.g., Lewis et al. [304] demonstrate that swapping
their model’s non-parametric memory with an up-
dated version enabled it to answer questions about
world leaders who had changed between the mem-
ory collection dates. Similarly, Izacard et al. [236]
demonstrate that their retrieval-augmented model
can update its knowledge forward and backward in
time by swapping the index.

2.11 Brittle Evaluations

One reason why the evaluation of language models
is a challenging problem is that they have an un-
even capabilities surface—a model might be able
to solve a benchmark problem without issues, but
a slight modification of the problem (or even a sim-
ple change of the prompt) can give the opposite
result [675, 342, 533] (see Section 2.7). Unlike
humans, we cannot easily infer that an LLM that
can solve one problem will have other related capa-
bilities. This means that it is difficult to assess the
performance of LLMs holistically since rigorous
benchmarks are needed to identify weaknesses for
a wide variety of inputs.

� Brittle Evaluations

Slight modifications of the benchmark
prompt or evaluation protocol can give dras-
tically different results.

Holistic benchmark suites, such as HELM [318],
try to make benchmarking more robust by standard-
izing evaluation across all scenarios and tasks while
ensuring broad coverage across as many capabili-
ties and risks as possible. Increasingly, models are
additionally being benchmarked on tests designed
for humans, including the SAT, LSAT, and math-
ematics competition tests, to name a few. Zhong

27



2015: As prime minister, David Cameron scored a surprising general election victory, enabling him to stay in power.
2016: With the shock of Brexit, David Cameron resigned and Theresa May stepped up as the new prime minister of the UK.
2017: Theresa May led a tumulutous year as Prime Minister, overseeing the Brexit negotiations.
2018: Amid increasing pressure, Theresa May remained the UK's Prime Minister.
2019: Theresa May's resignation gave way to Boris Johnson, who became the new Prime Minister of the UK.
2020: The COVID-19 pandemic challenged Boris Johnson in his role as Prime Minister.
2021: Boris Johnson, navigating through both Brexit and the pandemic, still held the office of Prime Minister.

Training data

Deployment
Who is the prime minister of the UK in 2023?

As of my knowledge cutoff in September 2021, the Prime Minister of the United Kingdom is Boris Johnson.

Problems due to reliance on outdated training data Solutions
S.1) Retr ieval Augmentation

S.2) Model Editing

2021
Training time

Retr ieved
context

Deployment
2023

Retr ieved
context

 In 2023, Boris Johnson is the Prime Minister.

       In 2023, Rishi Sunak is the Prime Minister.

Figure 11: Outdated knowledge can be addressed with S.1) retrieval augmentation by hot-swapping an underlying
retrieval index with up-to-date knowledge or S.2) by applying model editing techniques.

et al. [679] develop a benchmark, ‘AGIEval’, to
rigorously test the abilities of LLMs on these tests,
and find that GPT-4 achieves human-level perfor-
mance on several of these tests.

On traditional benchmarks, models can be quite
brittle to the choice of prompt or evaluation tech-
nique for a particular benchmark question. For
example, Fourrier et al. [151] found that bench-
mark results vary significantly depending on the
choice of evaluation method for the multiple
choice problem-solving benchmark MMLU [197],
whether it be generating text and checking if the
first token matches the letter of the multiple choice
answer [561], or gathering log-probabilities of each
correct answer [166]. Prompt variations are also
not typically normalized for, so models may be
sensitive to variations such as whether or not the
prompt appends ‘Please answer yes or no’. Jain
et al. [238] find that larger models and instruction-
fine-tuned models are likely to be more sensitive to
small variations in the prompt.

2.12 Evaluations Based on Static,
Human-Written Ground Truth

Another challenge of LLM evaluations is that they
often rely on human-written ‘ground truth’ text.
However, we often want to evaluate their perfor-
mance in domains where such text is scarce or
relies on expert knowledge, such as programming
or mathematics tasks. As models get more capable
and perform better than humans on benchmark tests
in some domains, the ability to obtain comparisons
to ‘human-level’ performance diminishes.

Further, benchmark datasets become outdated
over time—as models become more capable, older
benchmarks become saturated or overfit and no
longer provide a useful signal for further improve-
ment [113, 447, 263]. They are typically con-
structed around a set of tasks that were relevant
at the time of creation but may not adapt well to
the changing capabilities of LLMs. This means the

community must continually adapt to new static
benchmarks while de-emphasizing older ones or
more dynamic evaluation measures, such as human
evaluation of model outputs.

� Reliance on Static, Human-Written
Ground Truth

Static benchmarks become less useful over
time due to changing capabilities while up-
dating them often relies on human-written
ground truth.

To combat these issues, Srivastava et al. [519]
regularly admit new tasks to the Beyond the Imita-
tion Game benchmark (BIG-Bench), including pro-
grammatically evaluated tasks. Further, we high-
light two separate streams of work enabling dy-
namic evaluations without humans in the loop.

Model-generated evaluation tasks As LLM ca-
pabilities improve, they can increasingly generate
useful benchmark questions or evaluation prompts
themselves. Perez et al. [421] shows that LLMs can
be used to generate static benchmark datasets for ar-
bitrary axes, using reward models trained on human
preferences to filter a generated dataset for qual-
ity. Wang et al. [581] find that the order in which
candidate examples are presented in the prompt
can greatly impact the model-generated evaluation.
To mitigate this issue, they propose the usage of a
prompting template which encourages the model
to generate assessment evidence before assigning a
score and averaging scores of multiple assessments
with swapped candidate positions.

Model-generated scores Aside from generating
evaluation questions, models are increasingly used
to directly grade the performance of other models
and act as a ‘judge’ of other models’ capabilities
[325, 586, 238]. This concept follows the motiva-
tion that while it may be challenging for a model
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to generate ‘correct’ answers to prompts in many
domains, it can often be easier to evaluate the cor-
rectness of an answer or to judge the relative quality
between two answers [667, 156]. However, these
techniques often produce evaluation results that
vary significantly depending on the ‘judge’ model
and suffer from robustness issues that make them a
poor substitute for human judgment.

2.13 Indistinguishability between Generated
and Human-Written Text

Detecting language generated by LLMs is im-
portant for various reasons; some of which in-
clude preventing (1) the spread of misinformation
(e.g., authoritative-sounding false narratives citing
fake studies) [657], (2) plagiarism (e.g., LLMs
prompted to rewrite existing content in ways that
bypass plagiarism detection tools) [574, 573], (3)
impersonation or identify theft (e.g., by mimicking
a person’s writing style) [486, 602], and (4) auto-
mated scams and frauds (e.g., large-scale genera-
tion of phishing emails) [603], and (5) accidentally
including inferior generated text in future models’
training data [439]. However, such detections be-
come less trivial as the fluency of LLMs improves
[34].

� Detecting LLM-generated Text

The difficulty in classifying whether a text
is LLM-generated or written by a human.

There are primarily two lines of work addressing
this problem: (i) post-hoc detectors, which aim to
classify arbitrary text as being LLM-generated, and
(ii) watermarking schemes, which modify the text
generation procedure to make the detection easier.
However, both approaches can be susceptible to
paraphrase attacks, which we discuss thirdly.

Post-hoc Detectors Gehrmann et al. [168] open-
source a tool that visualizes statistically improbable
tokens to support humans in detecting generated
text artifacts. Bakhtin et al. [34] explore energy-
based models to discriminate between real and fake
text, including scenarios where the text generator
was trained on a completely different dataset than
the discriminator. Uchendu et al. [559] examine
three authorship attribution problems: (1) were
two texts produced by the same method or not; (2)
given a text, was it generated by human or ma-
chine, (3) which method generated a given text?
Mitchell et al. [371] investigate whether a model

can detect its own samples by posing a hypothesis:
minor rewrites of generated text have lower prob-
ability under the model than the original sample,
while the same cannot be said about human-written
text. Generated passages tend to lie in the negative
curvature regions of the model’s log probability
function. Their method, DetectGPT, exploits this
hypothesis by approximating that curvature given
some samples.

Watermarking Kirchenbauer et al. [268] em-
ploy a watermark, i.e., a hidden pattern that is im-
perceptible to humans but algorithmically identi-
fiable, during inference as follows: for each to be
generated token, they (1) hash the previous token
to seed a random number generator; (2) using that
seed, they randomly partition the vocabulary into a
“green list” and “red” list, and (3) sample the next
token by excluding any token from the red list. In
the case of low-entropy tokens, which renders it dif-
ficult to introduce changes to the vocabulary, they
introduce a “soft” version, which promotes using
the green list only for high-entropy tokens (when
many plausible choices are available). In follow-up
work, the same first authors Kirchenbauer et al.
[269] study the robustness of their watermarking
scheme in the wild, i.e., after it is re-written by
humans, non-watermarked LLMs, or mixed into
a longer hand-written document. They conclude
that watermarks remain detectable given sufficient
tokens and argue that this required amount of text
is a crucial yet overlooked metric.

Yang et al. [638] study watermarking of black-
box API models, where we cannot access the
model’s inference procedure. Tang et al. [537]
provide algorithms for identifying watermarks, not-
ing that watermarked LLMs tend to produce to-
ken distributions that differ identifiably from non-
watermarked models. Christ et al. [87] introduce
undetectable watermarks, which can only be de-
tected with the knowledge of a secret key.

To make watermarks robust to text corruptions
(we study a common type of such in the next para-
graph), Yoo et al. [649] suggest placing them on
“invariant features”, which are invariant to minor
modifications of the text.

Paraphrasing Attacks One way to evade
machine-generated text detectors is to re-phrase
the text such that the revealing LLM signatures get
removed.
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� Paraphrasing Attacks

Another LLM can rewrite LLM-generated
text to preserve approximately the same
meaning but change the words or sentence
structure.

Krishna et al. [280] evade several detectors (e.g.,
dropping DetectGPT’s detection accuracy from
70.3% to 4.6%) by training an 11B paraphrase gen-
eration model that can paraphrase paragraphs and
provides scalar knobs to control the amount of lex-
ical diversity and reordering in the paraphrases. To
defend against such attacks, they propose storing
model generations in a database, from which the
API provider can retrieve semantically similar texts
later. Since paraphrasing does not modify the se-
mantics of the text, the authors demonstrate that
this retrieval approach is fairly robust to paraphras-
ing attacks.

Sadasivan et al. [469] claim that the detection of
generated text, even with watermarking, is not reli-
able; neither in practice, by performing paraphras-
ing attacks; nor in theory, by providing a theoreti-
cal impossibility result. They also discuss how an
adversary can query watermarked LLMs multiple
times to extract its watermarking scheme and spoof
the watermark detector by composing human text
that is then wrongly classified as model-generated.

2.14 Tasks Not Solvable By Scale

The ongoing advancements of LLM capabilities
consistently astonish the research community, for
instance, by achieving high performances on the
MMLU [197] benchmark much sooner than com-
petitive human forecasters had anticipated [93].
Similarly, within less than a year, OpenAI released
GPT-3.5 and GPT-4, where the latter significantly
outperformed the former on various tasks [398].

Given this progress, one may question whether
there are limits we deem impossible to overcome
within the current paradigm of scaling data/model
sizes of autoregressive Transformer-based LLMs.
We emphasize that such tasks’ (permanent) exis-
tence is still somewhat speculative. Here, we ex-
plore possible patterns behind such tasks instead of
discussing specific ones (which we do in Sec. 2.11
and Sec. 3).

� Tasks Not Solvable By Scale

Tasks seemingly not solvable by further
data/model scaling.

Inverse Scaling (IS) is the phenomenon of task
performance worsening as model scale and train-
ing loss performance increases. Lin et al. [323]
first stumbled upon this property when evaluating
models of increasing sizes (e.g., GPT-2, GPT-3) on
their benchmark that measures whether an LLM is
truthful in generating answers to questions. They
conjecture that common training objectives incen-
tive false answers (which they call imitative false-
hoods) if they have a high likelihood on the training
distribution (we discuss dataset issues in Sec. 2.1).
McKenzie et al. [359] collect 11 datasets that ex-
hibit IS behavior and identify four potential causes
for such: (1) models regurgitating memorized data
rather than following in-context instructions, (2)
imitation of undesirable patterns in the training
data, (3) models learning to perform easier, so-
called “distractor task” rather than the intended
ones, and (4) spurious correlations in the given
few-shot examples.

Wei et al. [600] somewhat challenge the exis-
tence of inverse scaling by evaluating the tasks
proposed by McKenzie et al. [359] on even larger
models; up to trained on five times more com-
pute. In this increased compute region, four out
of eleven tasks remain inverse scaling; six out of
eleven exhibit “U-shaped scaling”, where the per-
formance first decreases up to a certain size and
then increases again. The authors hypothesize that
U-shaped scaling occurs when a task contains a
distractor task, which larger models can learn to
ignore. Similarly, in the case of quantifier compre-
hension tasks, Gupta [184] argue that previously
observed inverse scaling behavior might have been
due to inappropriate testing methodology.

Compositional tasks composed of multiple sub-
problems are an ideal outlet to investigate whether
models go beyond rote memorization of observed
facts and deduce novel knowledge [435]. Zhang
et al. [661] investigate whether language models
can learn deductive reason from data by introduc-
ing a class of propositional logic problems. The
authors prove that the model has enough capacity
to solve the task, yet, it instead learns to rely on
statistical features rather than emulating the cor-
rect reasoning function. Press et al. [435] measure
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how often a model can correctly answer all sub-
problems but not generate the overall solution, a ra-
tio they refer to as compositionality gap. They find
that increasing the model size in the GPT-3 family
of models improves solving sub-problems faster
than composed problems, suggesting that larger
models show no improvement for this gap. Dziri
et al. [135] find that systematic problem-solving ca-
pabilities do not emerge from maximum likelihood
training of Transformer models in general. They
base this claim on two hypotheses: (i) Transform-
ers reduce compositional tasks into linearized path
matching, a form of shortcut learning [169] that
does not generalize robustly; and (ii) errors in the
early stages of the task (i.e., when sub-problems
follow some order) compound substantially. Asher
et al. [26] prove that LLMs cannot learn semantic
entailment or consistency as defined in formal se-
mantics [128] due to a lacking understanding of
universal quantifiers (e.g., every, some, many, most,
etc.).

Memorization vs. Generalization An ongoing
debate evolves around the question of to what de-
gree LLMs memorize instead of generalize (and
what exactly the difference is [35]). Memorization
has been shown to (1) hurt (certain) downstream
task performances [294], (2) increase with the
model size [67, 264, 553, 354], and (3) emerge un-
predictably from smaller or partially-trained mod-
els [42]. Hence, we wonder whether some tasks do
not benefit from further model/dataset size scaling.

One such class of tasks might be counterfactual
tasks [619], i.e., tasks on which LLMs initially per-
form well modified such that specific input-output
conditions are changed while the general reasoning
procedure remains the same. For example, for an
arithmetic task, the counterfactual variant would
alter the base from 10 to 2. Wu et al. [619] find
that LLMs perform poorer the less common the
counterfactual conditions are, which they call a

“memorization-like effect”. An interesting future
direction would be to explore whether increasing
model size exacerbates performance due to more
memorization or actually improves because scaling-
law-optimal pre-training recipes would dictate scal-
ing the dataset proportionally (Sec. 2.3), which then
may include more of such tasks with uncommon
conditions.

2.15 Lacking Experimental Designs

Table 2 shows a (non-exhaustive) overview of se-
lected LLMs within the scope of this review, de-
scribed in academic papers. Many works do not
include controlled ablations, which is especially
problematic due to their large design space. We
posit that this impedes scientific comprehension
and advancement.

Lack of Controlled Ablations We observe that
many papers do not run controlled experiments (ab-
lations) by varying one factor at a time, likely due
to the prohibitive computational cost. For exam-
ple, Chowdhery et al. [86] conjecture PaLM might
outperform GPT-3 and other LLMs on many tasks
due to higher training corpus quality, but note they
“do not perform the necessary ablation studies to
say this conclusively” and instead solely focus on
model depth and width. Many papers from Table 2
adopt hyper-parameters from previous works [476]
and do not tune them after introducing a change
in the training pipeline. Sometimes, important im-
plementation details are not mentioned, e.g., when
optimizer states are reset during training [90].

� Uncontrolled Experiments

Papers presenting novel LLMs often lack
controlled experiments, likely due to the
prohibitive costs of training enough models.

An easy yet expensive fix is to run ablations
by varying one factor at a time, e.g., keeping
most hyper-parameters fixed except the model
size [44] or context lengths [557]. A cheaper po-
tential remedy can be zero-shot hyper-parameter
transfer from smaller models to larger ones [608,
633]. Yang et al. [633] find that when using the µP
network parameterization scheme, one can transfer
the effect of changing hyper-parameters such as the
learning rate across varying model depths, batch
sizes, sequence lengths, and training times, which
they verify empirically up to a 6.7B model. How-
ever, it has yet to be verified if such transferability
still holds for other varying factors; and if so, re-
searchers could afford to conduct more ablation
experiments via smaller models.

If additional experiments are prohibitively ex-
pensive, another recommendation is to report eval-
uation results beyond aggregated performance mea-
sures. For example, in reinforcement learning, re-
cent work has argued that providing entire perfor-
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Table 2: Overview of selected LLMs. Missing details denoted by N/A. For papers that investigate various model sizes, we
only report the largest. For each tokenizer entry with “SP”, we could not extract from the respective paper whether BPE or
Unigram tokenization was used. For publicly available code repositories and checkpoints, the corresponding ✓ is clickable.
Abbreviations: Autoregressive blank filling (ARBF) [132], Byte-pair encoding (BPE), Instruction-following (IF), Masked
Language Modeling (MLM), Rotary Next token prediction (NTP), SentencePiece (SP), Span Corruption (SC).
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2018.11 GPipe [226] Google Multil. 6B N/A Enc. & Dec. NTP BPE Learned ✗ ✗ ✓ ✗ ✗
2019.09 Megatron-LM [501] Microsoft Eng. 8.3B 157B Dec.-Only NTP BPE Learned ✗ ✗ ✓ ✗ ✗
2019.10 T5 [443] Google Multil. 11B 1T Enc. & Dec. SC SP T5 ✗ ✗ ✓ ✓ ✗
2020.05 GPT-3 [59] OpenAI Eng. 175B 300B Dec.-Only NTP BPE Learned ✗ ✗ ✗ ✗ ✗
2020.06 GShard [298] Google Multil. 600B 1T Enc. & Dec. NTP SP N/A ✗ ✓ ✗ ✗ ✗
2020.10 mT5 [631] Google Multil. 13B 1T Enc. & Dec. SC SP T5 ✗ ✗ ✓ ✓ ✗
2021.01 Switch [145] Google Multil. 1.5T N/A Enc. & Dec. SC SP T5 ✗ ✓ ✓ ✓ ✗
2021.03 BASE [302] Meta Eng. 117B N/A Enc. & Dec. NTP BPE Sinus. ✗ ✓ ✓ ✗ ✗
2021.04 PanGu-α [659] Huawei Multil. 200B 317B Dec.-Only NTP BPE Learned ✗ ✗ ✗ ✗ ✗
2021.05 ByT5 [630] Google Multil. 12.9B 1T Enc. & Dec. SC N/A T5 ✗ ✗ ✓ ✓ ✗
2021.06 CPM-2 [669] Tsinghua Uni. Multil. 198B N/A Enc. & Dec. SC Custom Sinus. ✗ ✓ ✓ ✓ ✗
2021.06 nmT5 [255] Google Multil. 3.7B 100B Enc. & Dec. MLM, NTP SP T5 ✗ ✗ ✗ ✗ ✓
2021.07 ERNIE 3.0 [530] Baidu Chin. 10B 375B Enc. & Dec. Custom BPE Rel. ✗ ✗ ✗ ✗ ✗
2021.08 Jurassic-1 [319] AI21 Eng. 178B 300B Enc. & Dec. NTP SP Learned ✗ ✗ ✗ ✗ ✗
2021.08 ExT5 [23] Google Eng. 11B 1T Enc. & Dec. SC, Custom SP T5 ✗ ✗ ✓ ✗ ✗
2022.01 FLAN-LaMDA [598] Google Eng. 137B 245M Dec.-Only NTP BPE T5 ✗ ✓ ✗ ✗ ✓
2021.10 M6-10T [322] Alibaba Eng. 10T N/A Uni. Enc. & Dec. SC, NTP SP N/A ✗ ✗ ✗ ✗ ✗
2021.10 Yuan [615] Inspur AI Chin. 245B 180B Dec.-Only NTP BPE N/A ✗ ✗ ✗ ✗ ✗
2021.10 T0 [475] BigScience Eng. 11B 12B Enc. & Dec. SC, NTP SP T5 ✗ ✗ ✓ ✓ ✓
2021.12 Gopher [441] DeepMind Eng. 280B 300B Dec.-Only NTP SP Rel. ✗ ✗ ✗ ✗ ✗
2021.12 RETRO [52] DeepMind Eng. 7B 419B Enc. & Dec. NTP (Ret.) SP Rel. ✗ ✗ ✗ ✗ ✗
2021.12 GLaM [130] Google Multil. 1.2T 600B Dec.-Only NTP SP Rel. ✗ ✓ ✗ ✗ ✗
2021.12 WebGPT [379] OpenAI Eng. 175B N/A Dec.-Only NTP BPE Learned ✗ ✗ ✗ ✗ ✓
2021.12 FairSeq [400] Meta Eng. 1.1T 300B Dec.-Only NTP BPE Sinus. ✗ ✓ ✓ ✓ ✗
2021.12 XGLM [324] Meta Multil. 7.5B 500B Dec.-Only NTP Unigram Sinus. ✗ ✗ ✓ ✓ ✗
2022.01 LaMDA [551] Google Eng. 137B 768B Dec.-Only NTP BPE T5 ✗ ✗ ✗ ✗ ✗
2022.01 MT-NLG [515] Microsoft Eng. 530B 270B Dec.-Only NTP BPE Sinus. ✗ ✗ ✗ ✗ ✗
2022.02 ST-MoE [687] Google Eng. 269B 1.5T Enc. & Dec. SC SP Sinus. ✗ ✓ ✓ ✗ ✗
2022.03 InstructGPT [403] OpenAI Eng. 175B N/A Dec.-Only RLHF BPE Learned ✓ ✗ ✗ ✗ ✓
2022.03 GopherCite [362] DeepMind Eng. 280B N/A Dec.-Only RLHF BPE Rel. ✓ ✗ ✗ ✗ ✓
2022.03 sMLP [653] Meta Eng. 9.4B N/A Enc. & Dec. NTP BPE Sinus. ✗ ✓ ✗ ✗ ✗
2022.03 Chinchilla [206] DeepMind Eng. 70B 1.4T Dec.-Only NTP SP Rel. ✗ ✗ ✗ ✗ ✗
2022.04 PaLM [86] Google Multil. 540B 780B Dec.-Only NTP SP RoPE ✗ ✓ ✗ ✗ ✗
2022.04 GPT-NeoX [47] EleutherAI Eng. 20B 472B Dec.-Only NTP BPE RoPE ✗ ✗ ✓ ✓ ✗
2022.04 Tk-Instruct [589] AI2 Eng. 11B 1B Enc. & Dec. NTP SP T5 ✓ ✗ ✓ ✓ ✗
2022.04 METRO-LM [33] Microsoft Eng. 5.4B 2T Enc.-Only METRO SP T5 ✗ ✗ ✗ ✗ ✗
2022.04 mGPT [500] Sber Multi. 13B 440B Dec.-Only NTP BPE Learned ✗ ✗ ✓ ✓ ✗
2022.05 OPT [666] Meta Eng. 175B 300B Dec.-Only NTP BPE Learned ✗ ✗ ✓ ✓ ✗
2022.05 UL2 [545] Google Eng. 20B 1T Enc. & Dec. MoD Unigram T5 ✗ ✗ ✗ ✓ ✗
2022.05 DeepStruct [578] UC Berkeley Eng. 10B N/A Enc. & Dec. Struc. BPE Sinus. ✗ ✗ ✗ ✗ ✗
2022.07 Minerva [305] Google Eng. 540B 26B Dec.-Only NTP SP RoPE ✗ ✗ ✗ ✗ ✗
2022.08 PEER [482] Meta Eng. 11B 5B Enc. & Dec. NTP SP T5 ✗ ✗ ✗ ✗ ✓
2022.08 AlexaTM [517] Amazon Multil. 20B 1T Enc. & Dec. MoD, NTP SP Sinus. ✗ ✗ ✗ ✓ ✓
2022.10 GLM-130B [658] Tsinghua Uni. Multil. 130B 400B Uni. Enc. & Dec. ARBF SP RoPE ✗ ✗ ✓ ✓ ✗
2022.10 U-PaLM [547] Google Eng. 540B 1.3B Dec.-Only MoD SP RoPE ✗ ✓ ✗ ✗ ✓
2022.10 FLAN-PaLM [93] Google Eng. 540B 1.4B Dec.-Only NTP SP RoPE ✓ ✓ ✗ ✗ ✓
2022.11 BLOOM [479] BigScience Multil. 176B 366B Dec.-Only NTP BPE ALiBi ✗ ✗ ✓ ✓ ✗
2022.11 Galactica [548] Meta Eng. 120B 450B Dec.-Only NTP BPE Learned ✗ ✗ ✓ ✓ ✗
2022.11 Atlas [236] Meta Eng. 11B N/A Enc. & Dec. MLM BPE T5 ✗ ✗ ✓ ✓ ✓
2022.11 BLOOMZ [377] BigScience Multil. 176B 13B Dec.-Only NTP BPE ALiBi ✓ ✗ ✓ ✓ ✓
2022.11 mT0 [377] BigScience Multil. 13B 13B Enc. & Dec. NTP SP T5 ✓ ✗ ✓ ✓ ✓
2022.12 OPT-IML [235] Meta Eng. 175B 2B Dec.-Only NTP BPE Sinus. ✓ ✗ ✓ ✓ ✓
2022.12 Med-PaLM [511] Google Eng. 540B 0B Dec.-Only NTP SP RoPE ✗ ✗ ✗ ✗ ✓
2023.02 LLaMA{-I} [556] Meta Eng. 65B 1.4T Dec.-Only NTP BPE RoPE ✓ ✗ ✓ ✓ ✗
2023.03 PanGu-Σ [455] Huawei Multil. 1T 329B Dec.-Only NTP BPE Learned ✗ ✓ ✗ ✗ ✓
2023.03 CoLT5 [15] Google Eng. 5.3B 1T Enc. & Dec. MoD N/A T5 ✗ ✗ ✗ ✗ ✗
2023.03 BloombergGPT [616] Bloomberg Eng. 50B 569B Dec.-Only NTP Unigram ALiBi ✗ ✗ ✗ ✗ ✗
2023.04 Cerebras-GPT [121] Cerebras Eng. 13B 257B Dec.-Only NTP BPE RoPE ✗ ✗ ✗ ✓ ✗
2023.04 Pythia [44] EleutherAI Eng. 12B 300B Dec.-Only NTP BPE RoPE ✗ ✗ ✓ ✓ ✗
2023.04 WizardLM [625] Microsoft Eng. 30B N/A Dec.-Only NTP BPE RoPE ✓ ✗ ✓ ✓ ✓
2023.05 Guanaco [118] Univ. of Washington Multil. 65B 82M Dec.-Only NTP BPE RoPE ✓ ✗ ✗ ✓ ✓
2023.04 RWKV [417] RWKV Eng. 14B N/A Dec.-Only NTP BPE RoPE ✓ ✗ ✓ ✓ ✓
2023.06 Orca [378] Microsoft Eng. 13B N/A Dec.-Only NTP BPE RoPE ✓ ✗ ✗ ✗ ✓
2023.07 LLaMA 2 [557] Meta Eng. 70B 2T Dec.-Only NTP BPE RoPE ✓ ✗ ✓ ✓ ✓
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mance distributions across all runs is less biased
and more robust to outliers than point estimates [9].

Curse of Dimensionality In Table 2, we high-
light some but not all differences across models,
as the table format constrained us. Other com-
mon differences include the training datasets or
fine-grained architectural details, e.g., the usage of
multi-head [563] or multi-query attention [494].

We note that a core characteristic of LLMs is
their vast design space, which renders scientific
inquiry challenging [231]. For example, by taking
into account the (i) data sources and their propor-
tions within the pre-training dataset, (ii) choice
and training hyper-parameters of the tokenizer, and
(iii) pre-training objective, the combined design
space quickly becomes high-dimensional. Under-
taking factorial experiments within such expansive
design spaces results in a combinatorially-growing
number of single training runs, and the lack of suf-
ficient experimental coverage can severely inhibit
scientific understanding of what makes an LLM
perform well. While this issue is not unique to
LLMs, they tend to be larger in the number of
parameters—and therefore compute requirements,
feedback loop times, and training costs—than mod-
els in most other fields.

� Curse of (Design) Dimensionality

Common design spaces of LLM experi-
ments are high-dimensional.

One possible way forward is to encourage the
community to use techniques like Bayesian opti-
mization (BO) with dimensionality reduction [594,
374], where we use a non-linear feature mapping to
map the input (the hyper-parameter configuration)
onto a lower dimensional manifold followed by a
BO procedure to optimize the underlying black-
box function (the LLM with respect to the hyper-
parameters). Another suitable tool to explore the
design space efficiently can be treatment effect es-
timation [284, 385], e.g., where the treatment is a
vector describing certain ablations [254].

2.16 Lack of Reproducibility

The reproducibility of empirical results is impor-
tant to verify scientific claims and rule out errors
in experimental protocols leading to such. When
researchers try to build upon non-reproducible re-
sults, they might waste resources.

Unfortunately, we stumble upon two unique re-
producibility issues in LLM research: repeatability
of (i) training runs and (ii) generations by close-
sourced API-served models. While the term “re-
producibility” is often used more broadly and can
slightly vary in its meaning [5], in the following,
we focus on “repeatability”, which we define as the
ability to repeat experimental outcomes exactly.

Training Repeatability Typical training proto-
cols of LLMs involve parallelism across multi-
ple compute nodes. The scheduling and com-
munication strategies between nodes can be non-
deterministic [387]. This variability can affect
the final result, especially in algorithms that are
not “order-invariant”, such as stochastic gradient
descent (SGD). Some sources of randomness are
(i) lock-free parallelism schemes [387], (ii) float-
ing point precision, e.g., when summing gradients
across devices, the order in which these sums are
computed can affect the final result [171], (iii) non-
deterministic, performance-optimized operations,
which are much faster and therefore desirable [3].

Further, Carlini et al. [64] point out that some
pre-training datasets consist of an index of web
content that individual users must crawl themselves,
rather than using static, standalone dumps. This is
due to monetary, privacy, and legal restrictions. As
a result, reproducibility can be easily compromised
if any of the sources in the index have changed
between the time the dataset curator collected them
and the time the end-user downloads them.

� Irrepeatable Training Runs

Parallelism strategies designed to distribute
the training process across many accelera-
tors are typically non-deterministic, render-
ing LLM training irreproducible.

Inference Repeatability Another peculiarity of
commercial LLMs is that they are typically served
via stochastic API in a black-box setting, which
comes with the following challenges: (i) the
provider retains complete authority over the model
and can introduce unpublicized changes, includ-
ing retraining the model, modifying its parame-
ters, or completely replacing it; (ii) even if model
updates are communicated, there is still uncer-
tainty about whether access to specific model ver-
sions will be maintained once they are deemed
outdated, (iii) even with a decoding temperature
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set to zero, API models often produce stochastic
outputs [392, 464, 456].

Chen et al. [76] provide preliminary evidence
confirming dramatic changes in API-served models.
They find that GPT-3.5 and GPT-4 performances on
four diverse tasks vary vastly within three months
(March to June 2023). For example, GPT-4’s ac-
curacy in identifying prime numbers was 97.6%,
but in June, its accuracy dropped to 2.4%; while
for GPT-3.5, the trend is reversed and it got much
better over time.

� Irreproducible API Inference

API-served models are often irreproducible.

An easy fix is to rely exclusively on open-source
LLMs [2].

3 Applications

In this section, we aim to provide practitioners with
a broad overview of the areas in which LLMs are
currently being applied and highlight some com-
mon application architectures across domains.

Analogous to the Challenges section, we high-
light the key constraints in each application area as
follows.

� Constraint

This box highlights a constraint.

3.1 Chatbots

General-purpose chatbots (dialogue agents) com-
bine the tasks of information retrieval, multi-turn
interaction, and text generation (including code).

Thoppilan et al. [551] introduced the LaMDA
family of chatbot LLMs with up to 137B parame-
ters, focusing on safety (via supervised fine-tuning
on human annotations) and factual grounding (via
access to external knowledge sources). Notably,
smaller LaMDA models (2B parameters) with fine-
tuning are shown to perform similarly on dialogue
quality and safety/grounding scores to the larger
LaMDA models (137B parameters) without fine-
tuning. LaMDA models were released as part of the
Bard chatbot service [429]. However, the latest ver-
sion of Bard now uses the PaLM 2 LLM [20, 216].

Glaese et al. [170] propose Sparrow, a chatbot
based on a 70B parameter Chinchilla LLM, and
use RLHF (Sec. 2.9) targeting 23 rules to fine-tune

the model to be more helpful, correct, and harm-
less. Sparrow also incorporates external knowledge
using a retrieval model to provide evidence from a
Google Search query. The RLHF approach outper-
forms the only dialogue-prompted and supervised
fine-tuned approaches regarding output preference
and rule violation rate.

Similarly, OpenAI [396] train the ChatGPT
chatbot using supervised fine-tuning and RLHF
(Sec. 2.9) to specialize a GPT-3.5 LLM for dia-
logue. GPT-4 [398] is the underlying model for the
ChatGPT Plus chatbot, but training and architec-
ture details have not been released.

Shuster et al. [508] introduce BlenderBot-3, a
175B parameter chatbot based on the OPT-175
LLM using supervised fine-tuning. BlenderBot-
3 incorporates external knowledge through mod-
ules that conduct internet searches and retrieve text-
based long-term memories generated from previous
outputs to help performance over long interactions.

� Maintaining Coherence

Multi-turn interactions make Chatbots eas-
ily “forget” earlier parts of the conversation
or repeat themselves [53, 451].

Köpf et al. [274] release the OpenAssistant Con-
versations dataset of human-annotated interactions
and use this to instruction fine-tune Pythia and
LLaMA models (up to 30B parameters) for chat-
bot applications. To help align the final models,
the dataset is generated with guidelines to make
the responses polite, helpful, concise, friendly, and
safety-aware. The LLaMA 30B version is cur-
rently used within the HuggingChat chatbot ap-
plication [229].

A key challenge of fine-tuning chatbots is cre-
ating a broad training dataset of high-quality con-
versations. To address this problem Chen et al.
[78] demonstrate using existing LLMs (OPT 30B)
to generate high-quality synthetic conversation
datasets based on a small number of expert-written
examples. Human crowd workers assessed the gen-
erated conversations to be comparable to existing
human-generated datasets on the metrics: interest-
ing, coherent, natural, and consistent. Chen et al.
[78] show the synthetic dataset can be used to fine-
tune a chatbot (BlenderBot 400M) and achieve
performance only slightly below fine-tuning with
human-generated datasets.

Chatbots’ intended generality also makes eval-
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Chatbots 3.1

BlenderBot3 (OPT-175) [508], Bard (LaMDA, PaLM2) [551],
Sparrow (Chinchilla) [170], ChatGPT (GPT-3.5, GPT-4) [396],
OpenAssistant (LLaMA) [274]

GPT-4 Technical Report [398], Sparks of AGI (GPT-4) [61],
Capabilities of ChatGPT [272]

Computational Biology 3.2
Proteins ESM-2 [326], ProtT5 [139], ProtST [627], CaLM [402], ProGen [352],

IgLM [505], xTrimoPGLM [73]

Genomics GenSLM [688], Nucleotide Transformers [106]

Computer Programming 3.3

InCoder [154], CodeGen [386], AlphaCode [313] , SantaCoder [17],
Polycoder [626], phi-1 [182]

Codex (GPT-3) [77]

Self-Debugging (Codex) [81], ViperGPT (Codex) [532],
RepoCoder [660], Repo-Level Prompt Generator [504]

Creative Work 3.4

Long Form Dramatron (Chinchilla) [368], Re3 (GPT-3) [637],
Detailed Outline Control (GPT-3) [636]

Short Form

CoPoet (T5, T0) [69], Spindle - Interactive Fiction (GPT-3) [63]

Cross-lingual Short Stories (PaLM) [452], ReelFramer (GPT-4) [584]

Idea Generation [187]

Visual LayoutGPT [148], LLM Grounded Diffusion [315]

Knowledge Work 3.5

Galactica [548], BloombergGPT [616]

Scientific NERRE (GPT-3) [133]

Data Analysis (GPT-4) [346]

Professional Exams [49], News Summarization [668],
Email Management [550], Academic Paper Review (GPT-4) [335]

Law 3.6

Legal Question Answering

Legal Entailment (GPT-3.5) [651], Bar Examination (GPT-3.5) [50]

Explaining Legal Concepts (GPT-4 + Retrieval) [478]

Law School (ChatGPT) [84], Bar Examination (GPT-4) [258]
Statutory Reasoning (GPT-3.5) [48], Law Professor (ChatGPT) [427],
Summarizing Judgments (GPT-3.5) [115], Litigation (ChatGPT) [234]

Case Prediction US Supreme Court (GPT-2 + GPT-3) [189]

Medicine 3.7

Medical Question Answering

PubMedGPT [565], GatorTronGPT [418]

MedPaLM(2) (PaLM) [511, 512], ChatDoctor (LLaMA) [655]

GPT-3.5 + Retrieval [320]

Medical Challenge Problems (GPT-4) [388],
Triage and Diagnosis (GPT-3) [301],
Surgical Knowledge QA (GPT-4) [393],
Social Media - Genetics Questions (ChatGPT) [134],
Social Media - General Questions (ChatGPT) [30],
Ophthalmology QA (ChatGPT) [21],
Medical Summarization (GPT-3.5, ChatGPT) [538]

Medical Information Retrieval

Medical Acronym Disambiguation (T5) [448],
Adverse Drug Event Extraction [178]

Clinical Information Extraction (InstructGPT) [10]

Reasoning 3.8

Self Improvement (PaLM) [222], Processed Based Fine-Tuning [560]

DIVERSE (GPT-3.5) [312], Socratic Sub-Questions (GPT-3) [502],
Mathematical Formalization (Codex) [159]

Causal Factors in Performance [525], Analogical Reasoning [595],
Causal Reasoning [286, 164, 519, 244, 288],
Common-Sense Reasoning [562]

Robotics 3.9

PaLM-E [129]

SayCan (PaLM + Scoring) [14], ChatGPT for Robotics [564],
REFLECT (GPT-4) [338], Code as Policies (Codex) [316],
PROGPROMPT (Codex) [510], Inner Monologue [225],
Statler (GPT-3.5) [647]

Social Sciences 3.10
Using LLMs to Model Human Behavior [12, 176],
Analyzing Behavioral Characteristics of LLMs [367, 414],
Simulating Social Relationships with LLMs [408]

Synthetic Training Data 3.11

Automated Labeling (GPT-3) [583], AugGPT (ChatGPT) [104],
Labeling + Generation (GPT-3) [123],
Information Retrieval (GPT-3) [51],
Decompositional Distillation (GPT-3) [503],
Code ‘Textbooks’ (GPT-3.5) [182], GPT3Mix [648]

Figure 12: Overview of LLM Applications. Color = Level of Model Adaption (Pre-Trained, Fine-Tuned, Prompting
Strategy, Evaluation).
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uating their capabilities’ full range difficult. Ko-
coń et al. [272] evaluate ChatGPT (GPT-3.5) on
25 tasks with 38k prompts covering a diverse set
of capabilities, including but not limited to ques-
tion answering, emotion recognition, offensive lan-
guage detection, spam detection, inference, and
sentiment analysis. While ChatGPT is shown to
have strong performance across the 25 tasks, it usu-
ally underperforms the SOTA in that domain. More
recently, Bubeck et al. [61] and OpenAI [398] in-
vestigate the capabilities of GPT-4 (base model of
ChatGPT Plus) across a wide range of tasks, in-
cluding interactions with humans and tools. Using
these evaluations Bubeck et al. [61] conclude that
GPT-4 is ‘strikingly close to human-level perfor-
mance’ across tasks.

Finally, the challenge of inference latency
(Sec. 2.5) is also potentially going to become an
important constraint [634] for chatbot applications
as LLMs scale. There is a trade-off between the
need for responsive live user interaction in a con-
versational format and utilizing larger LLMs [397].

� High Inference Latency

High inference latency (Sec. 2.5) hinders the
user experience [397], especially in multi-
turn interaction with chatbots.

3.2 Computational Biology

In computational biology, we are interested in non-
text data representing similar sequence modeling
and prediction challenges.

3.2.1 Protein Embeddings

One popular application of LLM-like models in
biology is to generate protein embeddings from
amino-acid or genomic sequence inputs. These em-
beddings can then be used as inputs for structure
prediction, novel sequence generation, and protein
classification tasks. Protein language models per-
form strongly on many academic datasets, but their
applicability to downstream tasks such as drug de-
sign is often unclear [110].

� Transfer to Downstream Applications

The ultimate objective of protein language
models is to deploy them in real-world
projects such as drug design. Evalua-
tions often target smaller and/or specialized
datasets, not considering how the models
could contribute to protein design in vitro
or in vivo.

Elnaggar et al. [139] train a range of LLM archi-
tectures to extract embeddings from protein amino
acid sequences. These embeddings are then used
as inputs on supervised per-amino acid and per-
protein prediction tasks. The best-performing LLM
architecture (ProtT5) achieved SOTA results on
per-amino acid protein secondary structure predic-
tion without using evolutionary information. Sim-
ilarly, Wu et al. [613] predict antibody backbone
and side-chain conformations.

Lin et al. [326] take a similar approach to train-
ing a protein LLM, the Evolutionary Scale Model
Transformer-2 (ESM-2), on protein amino acid se-
quences from the UniRef database using a masked
language modeling approach. They show sig-
nificant performance increases as the model is
scaled from 8 million to 15B parameters, with
the largest models outperforming the ProtT5 on
protein structure prediction benchmarks (CASP14,
CAMEO) [267, 457]. They also introduce ESM-
Fold, which uses the ESM-2 embedding model
for end-to-end atomic resolution prediction from a
single sequence. While ESMFold underperforms
the SOTA AlphaFold2 [248] on the CAMEO and
CASP14 benchmarks, the authors note that by rely-
ing only on embeddings ESMFold has an order of
magnitude faster inference time than AlphaFold2,
using just the protein sequence of interest rather
than structural templates and multiple sequence
alignments (MSAs). Jeliazkov et al. [240] find
that protein sequences designed by an inverted Al-
phaFold2 model are unlikely to be expressed, but
sequences generated using an inverted protein LLM
such as ESMFold were more likely to be expressed.

Researchers have also adopted the ESM-1 and
ESM-2 models to generate protein embeddings
for enzyme-substrate chemical structural class pre-
diction [245], training 3D geometric graph neural
networks for proteins [611], identifying disease-
causing mutations [337], designing novel pro-
teins [566], and guided evolution of antibodies for
affinity maturation [202].
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Chen et al. [73] propose training a new
model xTrimoPGLM (100B parameters) simul-
taneously for protein embedding and genera-
tion tasks using MLM and generative objectives.
The xTrimoPGLM-100B model (with fine-tuning
where relevant) outperforms existing approaches
on 13 out of 15 evaluated tasks.

Protein embedding models with alternative in-
puts have also been proposed. Outeiral and Deane
[402] train an 86 million parameter protein LLM
CaLM (Codon adaptation Language Model) us-
ing sequences of codons (nucleotide triads) as in-
put instead of amino acids due to codons contain-
ing potentially richer information. Madani et al.
[352] train a 1.2B parameter protein embedding
model ProGen on 280 million protein amino acid
sequences with additional control tags specifying
protein properties. ProGen is then fine-tuned us-
ing data from specific protein families and applied
to generate functional full-length amino acid se-
quences. Similarly, Xu et al. [627] propose train-
ing a protein language model, the ProtST, on pro-
tein sequences and additional text descriptions of
their key properties for protein classification and
retrieval tasks.

Finally, for antibodies specifically, Shuai et al.
[505] propose an Immunoglobulin Language
Model (IgLM) using the GPT-2 architecture (with
13 million parameters) for the generation of im-
munoglobulin sequences, using a masked language
modeling approach. Similar to Xu et al. [627], the
IgLM model also takes additional conditioning tags
corresponding to chain type and species as input.
The authors show the IgLM model can then be
used for the controllable generation of infilled and
full-length antibody sequences.

3.2.2 Genomic Analysis

LLMs in the field of genomic analysis enable a
better understanding of the effects of mutations
in humans and predict genomic features directly
from DNA sequences. While genomic language
models are a promising research direction, current
models cannot process many genomic sequences as
their sequence lengths commonly exceed multiple
billions of nucleotides [390].

� Limited Context Window

The largest genomes have vastly longer
DNA sequences [390] than existing ge-
nomic LLMs’ context windows can han-
dle, constraining the types of genomes that
can be successfully modeled using these ap-
proaches.

Zvyagin et al. [688] introduce a range of hier-
archical LLMs (up to 25B parameters) with long
input sequences (2048 - 10,240 tokens), referred
to as Genome-scale Language Models (GenSLMs).
The GenSLM models are pre-trained on Prokary-
otic gene sequences from the BV-BRC dataset us-
ing codon tokenization [402] and then fine-tuned
on SARS-CoV-2 genome sequences for the task
of identifying potential new variants and genera-
tive modeling. However, the authors note that it
remains unclear whether the GenSLM architecture
generates richer representations than the protein
LLM approaches.

Dalla-Torre et al. [106] train Nucleotide Trans-
formers with 500 million to 2.5B parameters on nu-
cleotide sequences from human and other species
genomes, using a masked language modeling ap-
proach. The Nucleotide Transformers were evalu-
ated on 18 genomic prediction tasks with fine-tuned
larger models achieving the best results.

Nguyen et al. [383] propose HyenaDNA, a ge-
nomic language model based on the Hyena archi-
tecture [430], enabling modeling of genomic se-
quences of up to 1 million tokens. HyenaDNA
outperforms Transformer-based models with mul-
tiple orders of magnitude more parameters while
incorporating the in-context learning capabilities
of LLMs into the genomics domain.

3.3 Computer Programming

One of LLMs’ most advanced and broadly adopted
applications is generating and completing computer
programs in various programming languages. This
section deals with programming-specific LLMs
where the model is fine-tuned or pre-trained ex-
clusively for programming applications, but it is
important to note the increasing use of general
chatbots partially trained on code datasets (such
as ChatGPT) for programming tasks.

3.3.1 Code Generation
Code generation refers to using an LLM to output
new code for a given specification or problem pro-
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vided as a prompt. Several computer programming-
specific LLMs and approaches have been proposed.

For Python code generation, Chen et al. [77]
introduce Codex, a fine-tuned GPT-3 LLM (up
to 12B parameters) specialized to generate stand-
alone Python functions from doc strings. Fine-
tuning was conducted using a raw dataset of 159
GB of Python source code from GitHub and a fil-
tered dataset of correctly implemented standalone
Python functions. Codex models outperformed
similarly sized GPT-3 and GPT-J models on the
HumanEval evaluation set, with the Codex model
trained on the filtered dataset (Codex-S) achieving
the best results. Importantly, Chen et al. [77] note
that there was no observed improvement from us-
ing a pre-trained GPT-3 model as a base other than
faster convergence.

Chen et al. [81] seek to improve the performance
of Codex through a self-debugging prompting ap-
proach. Three forms of self-debugging are inves-
tigated. Simple feedback prompts the model to
decide whether the generated code solution is cor-
rect. Unit-test feedback prompts the model with
the output of unit tests provided in the problem
description. Code explanation feedback prompts
the model to explain the solution in detail and use
the explanation to correct the solution. In each
case, this process is repeated iteratively until the
model provides a solution it states is correct or
a maximum number of attempts has been made.
Codex using the self-debugging prompting frame-
work with code explanation (and unit-testing if
applicable) outperforms the base Codex model on
C++-to-Python translation, text-to-SQL generation,
and text-to-Python generation.

Gunasekar et al. [182] train a smaller model Phi-
1 (1.3B parameters) to generate Python functions
from doc strings. Training phi-1 using a combina-
tion of filtered existing datasets and new synthetic
textbook and exercise datasets results in a model
that can achieve near current SOTA results on Hu-
manEval while having over an order of magnitude
fewer parameters and tokens than previous works.

Another area of interest has been the develop-
ment of multilingual programming LLMs. Xu et al.
[626] evaluate a range of code generation LLMs
and train a new multilingual LLM Polycoder (2.7B
parameters) using source code from 12 languages.
However, for Python specifically, Codex outper-
forms Polycoder and other existing models (GPT-J,
GPT-Neo, and CodeParrot) on HumanEval.

Nijkamp et al. [386] train the CodeGen family
of LLMs (up to 16B parameters) using a combi-
nation of three datasets: natural language, multi-
lingual programming source code (C, C++, Go,
Java, JavaScript, and Python), and a monolingual
Python dataset. The largest CodeGen model using
the monolingual training set was shown to outper-
form the Codex-12B model. Nijkamp et al. [386]
also test CodeGen on multi-step program synthesis,
where a program is broken down into multi-step
natural language prompts, which the model then
implements individually (creating the new Multi-
Turn Programming Benchmark (MTPB)).

Finally, Li et al. [313] focus on the task of
solving competitive programming questions (Code-
forces, Description2Code, and CodeNet). The Al-
phaCode LLM (up to 41B parameters) is first pre-
trained on a multilingual dataset (C++, C#, Go,
Java, JavaScript, Lua, PHP, Python, Ruby, Rust,
Scala, and TypeScript) of 715 GB of source code
from GitHub. It is then fine-tuned using a new
curated dataset of competitive programming prob-
lems called CodeContests. To achieve high per-
formance, Li et al. [313] use large-scale sampling
(up to millions of samples), filtering, and clustering
of candidate solutions generated by AlphaCode to
select the final submissions.

However, whilst these existing code-generation
LLMs have achieved impressive results, a criti-
cal current constraint in applying LLMs to code
generation is the inability to fit the full code base
and dependencies within the context window. To
deal with this constraint, a few frameworks have
been proposed to retrieve relevant information or
abstract the relevant information into an API defi-
nition.

� Long-Range Dependencies [660, 504]

Long-range dependencies across a code
repository usually cannot be regarded be-
cause of limited context lengths (Sec. 2.6).

Zhang et al. [660] introduce RepoCoder, a
retrieval-based framework for repository-level code
completion that allows an LLM to consider the
broader context of the repository. A multi-step
retrieval-augmented generation approach is taken,
where the initial code generated is then used to re-
trieve further, potentially more relevant, repository
code snippets to refine the final output. This ap-
proach can be considered a retrieval-based method
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for relieving the long-range dependency constraint.
Similarly, Shrivastava et al. [504] propose the

Repo-Level Prompt Generator (RLPG) framework
to dynamically retrieve relevant repository context
and construct the correct prompt for a given com-
pletion task. To do this, many prompt proposals
are generated from different prompt sources (e.g.,
parent class) and prompt contexts (e.g., method
names). The best prompt is then selected by a
prompt proposal classifier and combined with the
default context to generate the final output.

Finally, Surís et al. [532] create the ViperGPT
framework, which utilizes the Codex LLM to gener-
ate programs that answer text-based visual queries.
The Codex model is prompted with the query text
and an API specification to do this. The human-
generated API specification provides functions de-
signed to deal with low-level visual tasks (e.g.,
find(object)) that the LLM can then use to gen-
erate solution code. This approach significantly
reduces the tokens needed to provide repository/-
code context by only providing the API definition.
This API definition approach, illustrated in 13 has
been used in robotics by Vemprala et al. [564], and
by Wang et al. [579] as part of a Minecraft agent.
Previously, Gupta and Kembhavi [185] used a pre-
defined function approach within VISPROG, which
uses GPT-3, external python modules, and few-shot
prompting with example programs to solve visual
tasks.

3.3.2 Code Infilling and Generation
Code infilling refers to modifying or completing
existing code snippets based on the code context
and instructions provided as a prompt.

Fried et al. [154] train the InCoder LLM (up
to 6.7B parameters) to both generate Python code
and infill existing code using a masked language
modeling approach. Incoder is trained using 159
GB of text split roughly equally between Python
source code, StackOverflow content, and source
code in other languages. On the HumanEval gener-
ation benchmark, InCoder underperforms the best-
performing Codex and CodeGen models. However,
unlike the other models, InCoder can perform sin-
gle and multi-line infilling of existing code.

Similarly, Allal et al. [17] train a set of smaller
SantaCoder models (1.1B parameters) for code gen-
eration and code infilling using 268 GB of Python,
JavaScript, and Java source code. SantaCoder is
primarily evaluated on the MultiPL-E benchmark
(an extension of HumanEval and MBPP [28] bench-

LLM

Using the API functions 
provided, write a program 
that…
 

Prompt 
def locate_item(item_name):
    """ Returns x,y,z of item """
def move_to_location(x, y, z):
    """ Moves to x,y,z coordinates"""
def drop_item(item_name):
    """ Removes item from inventory"""

API Defintion 

move_to_location(10, 20, 0)
locate_item('apple')
move_to_location(5, 10, 15)
drop_item('apple')

Output

 def drop_item(item_name):
    """ Removes item from inventory"""
    item_list.remove(item_name)

API Implementation Store

Function 
Implementation

Self-
debugging

Figure 13: API Definition Framework. Illustration of
providing a general API definition in the prompt [532,
579, 564] to enable the consistent use of either external
code or tools to solve the specific task whilst minimiz-
ing the required context window. Extensions to this ap-
proach have included asking the LLM to implement the
functions within the API definition (red) and to prompt
the LLM to self-debug any API code that does not exe-
cute (green).

marks), with it shown to outperform InCoder on
both HumanEval generation and infilling (passing
over 100 attempts).

Code infilling is particularly relevant for applica-
tions involving modifying, reviewing, or debugging
existing code. Maniatis and Tarlow [357] explore
the data from the intermediary steps in the develop-
ment process to help automatically resolve reviewer
comments [155]. The Dynamic Integrated Devel-
oper ACTivity (DIDACT) methodology formalizes
tasks in the software development process (e.g., re-
pairing builds, predicting reviewer comments, etc.)
into state, intent, and action components, and trains
the model to predict code modifications. This ap-
proach aims to train the model to understand the
process of software development rather than only
the end product.

3.4 Creative Work

For creative tasks, LLMs have primarily been ap-
plied to story and script generation.

For long-form story generation, Mirowski
et al. [368] propose using a 70B Chinchilla-
optimal [206] LLM Dramatron with prompting,
prompt chaining, and hierarchical generation to
create complete scripts and screenplays without
the requirement for a human-in-the-loop (although
co-writing is facilitated). The ability of Dramatron
to help create a script was evaluated qualitatively
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through co-writing and follow-up interviews with
15 industry experts.

Similarly, Yang et al. [637] propose using GPT-3
with a Recursive Reprompting and Revision frame-
work (Re3) to generate stories over 2,000 words
long. The Re3 approach uses zero-shot prompting
with GPT-3 to generate a plan (settings, characters,
outline, etc.). It then recursively prompts GPT-3 to
generate story continuations using a specified dy-
namic prompting procedure. Possible story contin-
uations are then ranked for coherence and relevance
using separate fine-tuned Longformer models as
part of a Rewrite module. Finally, local edits to
the selected continuations are made by detecting
factual inconsistencies using the combination of a
GPT-3 model [403] and a BART model [303] as
part of an Edit module. This process can then be
iterated for fully automated story generation.

Finally, Yang et al. [636] introduce the Detailed
Outline Control (DOC) framework to maintain plot
coherence over thousands of words using GPT-3.
While DOC uses the same high-level planning-
drafting-revision approach as Re3, it implements
this through the use of a detailed outliner and de-
tailed controller. The detailed outliner first breaks
down the high-level outline into subsections us-
ing a breadth-first approach, with candidate gen-
erations for the subsections created, filtered, and
ranked. The bodies of the detailed outline subsec-
tions are then generated iteratively using a struc-
tured prompting approach. During the generation,
an OPT-based FUDGE [635] detailed controller is
used to help maintain relevance.

In each case, to apply LLMs to long-form story
generation, the task is broken down into a series of
short-form sub-tasks (14). The current capabilities
of LLMs primarily drive this approach, but also
the desire to have a human-in-the-loop for some
co-writing use cases [368].

� Limited Context Window [368, 637]

The inability of current LLMs to keep the
entire generated work within the context
window currently constrains their long-form
applications and generates the need for mod-
ular prompting (14).

For short form generation, Chakrabarty et al.
[69] propose CoPoet (fine-tuned T5 and T0 models)
for collaborative poetry generation, Razumovskaia
et al. [452] use PaLM and prompting with plans

for cross-lingual short story generation, Wang et al.
[584] use GPT-4 as part of the ReelFramer tool to
help co-create news reels for social media, Ippolito
et al. [232] use LaMDA as part of the Wordcraft cre-
ative writing assistant, and Calderwood et al. [63]
apply a fine-tuned GPT-3 model as part of their
Spindle tool for helping generate choice-based in-
teractive fiction.

For more general creative tasks, Haase and
Hanel [187] assess a range of LLMs (including
ChatGPT) on their capacity for idea generation (ev-
eryday creativity) using the Alternative Uses Test
(generating alternative uses for given items). On
this task, LLMs were found to perform comparably
to 100 human participants.

Finally, for visual creative tasks, LLMs have also
been used to increase the level of control users have
when using image generation models. Feng et al.
[148] propose the LayoutGPT method where an
LLM (GPT-3.5, GPT-4 or Codex) is used to gener-
ate a CSS Structure layout the image should follow
based on a text-based user prompt. This layout
can be visualized and used as input to guide an
image generation model. This approach performs
strongly on text-to-image generation and indoor
scene synthesis. A similar concept is implemented
by Lian et al. [315], where an LLM (GPT-3.5) is
used to generate natural language layouts (bound-
ing boxes and descriptions) to guide a diffusion
model. Using an LLM as part of a modality conver-
sion framework 16 has also been used in robotics
[338, 225] and knowledge work [329].

3.5 Knowledge Work

With researchers increasingly demonstrating
LLMs’ ability to perform well on domain-specific
knowledge tasks such as within Law [258] or
Medicine [512], interest has grown in LLMs’ ca-
pacity for wider knowledge work. These applica-
tions are likely to be found across the labor market
with Eloundou et al. [140] estimating that 80% of
the US workforce is in roles where at least 10% of
tasks could be affected by LLMs.

In the professional services field, Bommarito
et al. [49] evaluate GPT-3.5 and previous GPT ver-
sions on actual and synthetic questions from the
Uniform CPA Examination Regulation section and
AICPA Blueprints for legal, financial, accounting,
technology, and ethical tasks. Using only zero-shot
prompting, the best performing model (latest GPT-
3.5) struggles with quantitative reasoning, achiev-
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Figure 14: Modular Prompting. Illustration of using
a series of separate prompts [368, 637, 368, 579, 584]
and processing steps to enable an LLM to perform tasks
that would either not fit in a single context window or
could not easily be specified in a single prompting step.

ing results similar to random guessing on multiple-
choice questions. However, on qualitative sections,
GPT-3.5 achieved 50-70% accuracy, significantly
ahead of random guessing and approaching human-
level scores.

� Numerical Reasoning [436, 49]

LLMs have generally seen worse perfor-
mance on quantitative tasks, potentially con-
straining their applications in knowledge
work areas such as financial services or ac-
counting.

Wu et al. [616] train BloombergGPT (50B
parameters) for various financial knowledge

work, including sentiment analysis, classifica-
tion, NER/NED, and financial question answering.
BloombergGPT is shown to outperform the OPT
(66B parameters), GPT-NeoX, and BLOOM (176B
parameters) LLMs on these financial domain-
specific tasks and performs competitively on
broader benchmarks.

Thiergart et al. [550] considers the applicability
of GPT-3 to the task of email management, includ-
ing classification, information extraction (NER),
and generating response text. Whilst it is noted
that GPT-3 has the capacity for all three tasks, the
author highlights current issues around reliability,
lack of access to internal data, and the need for a
human in the loop.

Liu et al. [329] propose enabling LLMs to un-
derstand charts and plots by first using a vision
plot-to-text translation model (DePlot) to decom-
pose the chart into a linearized data table. Once the
chart or plot has been converted into a text-based
data table, it is combined with the prompt and pro-
vided to a Flan-PaLM, Codex, or GPT-3.5 LLM. A
similar modality conversion 16 approach has also
been used in robotics [338, 225] for sensor data.

Zhang et al. [668] evaluate a range of LLMs
(GPT-3, InstructGPT, OPT, GLM, Cohere, and An-
thropic) on the task of news summarization. On
the DM/CNN and XSUM benchmarks, instruction
fine-tuned models (InstructGPT) perform the best
across summarization faithfulness, relevance, and
coherence. To evaluate against human capabil-
ity Zhang et al. [668] collect reference summa-
rizations for 100 articles from 6 freelance writers.
Zero-shot InstructGPT-3 performs comparably to
the freelance writers across the three metrics.

Cheng et al. [82] investigate GPT-4’s capacity to
perform data analysis and compare it to human an-
alysts. GPT-4 is combined with a modular prompt-
ing framework 14 with three steps, code generation
(SQL and Python), code execution (“collect data
and output figures”, etc.), and analysis generation
(“generate five bullet points about the analysis”).
While GPT-4 performs well, it currently underper-
forms experienced human data analysts on tasks
from NvBench [346].

For scientific knowledge work, Taylor et al.
[548] train the Galactica LLM specifically on sci-
entific text for tasks such as scientific knowledge
recall, reasoning, citation prediction, and scientific
Q&A. In addition to a domain-specific training
corpus, Galactica is specialized in the scientific do-
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main through the use of specialized tokens, work-
ing memory, and prompt-pre-training.

Dunn et al. [133] propose fine-tuning GPT-3 for
scientific combined named entity recognition and
relation extraction (LLM-NERRE). First, 100 to
1,000 manually annotated prompt-completion pairs
are created by humans. These examples are then
used to fine-tune a GPT-3 model for the specific
NERRE task.

Finally, Liu and Shah [335] evaluate GPT-4’s
ability to review academic papers, specifically:
identifying errors, verifying author checklists, and
selecting the better abstract. GPT-4 shows some
capacity to detect errors, with 7 out of 13 errors
detected, and verify author checklists, with 87%
accuracy. However, GPT-4 is shown to have lim-
ited capacity for distinguishing the better paper
abstract.

3.6 Law

Applications of LLMs within the legal domain
share many similarities with medicine, including
legal question answering [651, 258] and legal in-
formation extraction [71]. However, other domain-
specific applications have been proposed, such as
case outcome prediction [189], legal research [234],
and legal text generation [423].

3.6.1 Legal Question Answering and
Comprehension

Key tasks of the legal field are finding related prece-
dents, answering legal questions, and comparing
existing documents or statutes.

Using a general-purpose LLM with prompting
approach, Yu et al. [651] use GPT-3.5 with zero-
shot, few-shot, and CoT prompting to achieve
SOTA performance on the legal entailment task
(identifying the relevant statutes and determining
if a given premise is correct) in the Competition
on Legal Information Extraction/Entailment (COL-
IEE) dataset [437]. They also investigate a GPT-3.5
version fine-tuned using the COLIEE training set
with and without explanations but find the zero- and
few-shot legal prompting approaches perform best.
Similarly, Rosa et al. [460] use a general monoT5
model with zero-shot prompting on the COLIEE
entailment task.

On the US legal Uniform Bar Examination
(UBE), Bommarito II and Katz [50] show that GPT-
3.5 with zero-shot prompting can achieve 50% on
the multiple choice Multistate Bar Examination
component, but note that fine-tuning the model

on relevant examples does not appear to improve
performance. More recently, Katz et al. [258]
show that GPT-4 with zero-shot prompting exhibits
SOTA performance on the full UBE, including the
multiple choice, essay, and performance test com-
ponents, and achieves passing scores.

Blair-Stanek et al. [48] assess GPT-3.5’s abil-
ity to reason about legal facts and statutes us-
ing the StAtutory Reasoning Assessment (SARA)
dataset [208]. GPT-3.5 is shown to have SOTA per-
formance but with significant variation depending
on the type of prompting used (zero-shot, few-shot,
and CoT). GPT-3.5 was also shown to perform rela-
tively poorly on synthetic statutory reasoning tasks.

Choi et al. [84] evaluate ChatGPT (GPT-3.5)
on 95 multiple-choice and 12 essay questions from
the final exams at the University of Minnesota law
school. ChatGPT was found to perform at the level
of a C+ student, near the bottom of the class, but
with passing scores.

� Out of Date Information

Due to regularly updated laws and new
precedents, the training/retrieval data be-
come outdated frequently [195].

Finally, many more specific legal question-
answering applications have been proposed, in-
cluding: explaining legal concepts (GPT-4 + re-
trieval) [478], summarizing legal judgments (GPT-
3.5) [115], litigation research and drafting [234],
and helping full-fill the tasks of a law professor
(ChatGPT) [427].

3.6.2 Case Prediction and Legal Text
Generation

Case prediction and legal text generation involve
predicting or completing legal opinions. Whilst
there is currently sparse usage of LLMs in the liter-
ature, smaller language models have been applied,
suggesting potential future LLM applications in
this area.

Hamilton [189] use nine separate GPT-2 models
trained on individual supreme court justice’s au-
thored opinions to predict how each justice will
vote on a given case. They use a handcrafted
prompt, including a summary of the topic gener-
ated by GPT-3. However, they find this approach
to case prediction does not match the SOTA.

Previously, Chalkidis et al. [70] trained a range
of attention-based models (including BERT) to pre-
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dict case outcomes from the European Court of
Human Rights (ECHR). The attention-based mod-
els outperformed an SVM with a bag of words
approach for binary violation classification, multi-
label violation classification, and case importance
prediction.

Finally, Peric et al. [423] use a dataset of 50,000
judicial opinions from U.S. Circuit Courts to train
a Transformer-XL model and fine-tune a GPT-2
model. The models were then evaluated for their
ability to complete a judicial opinion, with a start
given as a prompt. In qualitative evaluations, hu-
man participants struggled distinguishing between
machine-generated and genuine text.

3.7 Medicine

Many applications of LLMs have been proposed
in the medical domain, including medical ques-
tion answering [511, 512, 320, 655, 388], clinical
information extraction [10, 448], indexing [650],
triage [491, 301], and management of health
records [276].

3.7.1 Medical Question Answering and
Comprehension

Medical question answering and comprehension
consists of generating multiple-choice and free-text
responses to medical questions.

Singhal et al. [511] proposed using few-shot,
CoT, and self-consistency prompting to specialize
the general-purpose PaLM LLM to medical ques-
tion answering and comprehension. They demon-
strate a Flan-PaLM model [93] using a combination
of the three prompting strategies to achieve the pre-
vious SOTA results on the MedQA, MedMCQA,
PubMedQA, and MMLU medical datasets. To fur-
ther align the model to the medical domain, they
proposed Med-PaLM, which utilizes instruction
prompt-tuning based on 40 examples from a panel
of clinicians and task-specific human-engineered
prompts.

Singhal et al. [512] then extend the Med-PaLM
approach with Med-PaLM 2 using the newer PaLM
2 LLM as its base model. Singhal et al. [512]
conduct further instruction-fine tuning and use a
new ensemble refinement (ER) prompting strategy
(where stochastically sampled outputs are first gen-
erated and provided within the final prompt). This
allows Med-PaLM 2 to achieve the current SOTA
on the MultiMedQA benchmark.

Liévin et al. [320] adopt a similar approach us-
ing zero-shot, few-shot, and CoT prompting to

adapt the GPT-3.5 LLM to medical question an-
swering (USMLE and MedMCQA) and compre-
hension (PubMedQA) tasks. In addition, Liévin
et al. [320] propose using retrieval augmentation
where relevant text from Wikipedia is retrieved
and included in the prompt. More recently, Nori
et al. [388] evaluated GPT-4 on USMLE and Mul-
tiMedQA datasets using zero and few shot prompt-
ing. GPT-4 is found to outperform GPT-3.5 across
benchmarks significantly. However, several issues
relating to using GPT-4 for real-world clinical ap-
plications are raised, including the risks of erro-
neous generations and the risks of bias. Tang et al.
[538] raise similar issues and find that GPT-3.5 and
ChatGPT have issues with factual accuracy and
representing the level of certainty during medical
summarization.

� Hallucination and Bias [538, 388, 511]

The safety-critical nature of the medical do-
main means the possibility of hallucinations
significantly limits the current use cases.
Further work is also needed to reduce the
risk of LLMs perpetuating existing bias in
clinical datasets.

Yunxiang et al. [655] fine-tune a LLaMA LLM
ChatDoctor (7B parameters) specifically for the
task of medical question answering. To specialize
the LLaMA model, it is first instruction fine-tuned
using the Alpaca dataset [540] and then fine-tuned
to the medical domain using a dataset of 100k pa-
tient conversations. Similarly to Liévin et al. [320],
ChatDoctor is augmented with two external knowl-
edge sources (a disease database and Wikipedia) to
improve the factual grounding of the model.

Instead of using general models with specialized
prompting or fine-tuning, Venigalla et al. [565]
train a new model PubMedGPT specifically for
medical question answering and text generation
tasks. PubMedGPT is trained using a combina-
tion of PubMed abstracts and full documents from
the Pile [165]. Peng et al. [418] also train a new
LLM GatorTronGPT (up to 20B parameters) for
biomedical question answering and relation extrac-
tion using a mixture of clinical and general English
text. Whilst these approaches outperformed exist-
ing smaller specific purpose models [177, 644] in
medical question answering, they currently under-
perform the larger general purpose LLMs (GPT-
3.5/4 and MedPaLM 1/2). However, there remains
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debate over whether larger general or specialized
clinical models are the best approach. Looking
at models up to GPT-3, Lehman et al. [297] ques-
tion the effectiveness of LLM in-context learning
approaches by showing that small specialized clin-
ical models fine-tuned on limited annotated data
outperform the former.

Finally, LLMs have also been applied to a range
of more specific medical question-answering tasks,
including evaluating GPT-3 on its’ ability to triage
and diagnose cases [301], responding to social me-
dia genetics [134] and general [30] patient ques-
tions (ChatGPT), answering questions from the
Korean general surgery board exams (GPT-3.5,
GPT-4) [393], consultation and medical note tak-
ing [296], and answering ophthalmology questions
[21].

3.7.2 Medical Information Retrieval
Medical text often contains domain-specific abbre-
viations, acronyms, and technical terms presenting
specific information retrieval challenges. This has
led LLMs also to be applied to help structure and
extract data from medical sources.

Agrawal et al. [10] use InstructGPT (GPT-3)
with prompt templates (zero- and one-shot) for clin-
ical information extraction, such as extracting med-
ication dosage and frequency from medical notes
or disambiguation of medical acronyms. They also
introduce two methods for converting the LLM
output into a structured format using a verbilizer
for mapping to classification labels and a resolver
for more complex structured outputs such as lists
(GPT-3 + R).

Rajkomar et al. [448] take a different approach
by treating medical acronym disambiguation as
a translation task and training a specialized end-
to-end T5 LLM. To preserve privacy, they also
use a training dataset generated from public web
pages (without medical acronyms) and web-scale
reverse substitution of medical acronyms, with only
evaluation done on actual clinical notes.

Finally, Gu et al. [178] use GPT-3.5 and knowl-
edge distillation to train a PubMedBERT model
for adverse drug event extraction (entity and rela-
tion). The distilled PubMedBERT model outper-
forms GPT-3.5 and GPT-4, and performs similarly
to specialized models that use supervised learning.

3.8 Reasoning

Mathematical and algorithmic tasks often require
a different set of capabilities than traditional NLP

tasks, such as understanding mathematical opera-
tions, complex multi-step reasoning, and longer-
term planning. Therefore, the applicability of
LLMs to these tasks, and methods for improving
their capabilities, is an active area of research.

For mathematical reasoning tasks, Uesato et al.
[560] test a range of fine-tuning (supervised and
RLHF), prompting (zero-shot and few-shot), and
re-ranking (majority voting and reward model) to
evaluate whether they improve a base LLM’s (70B
parameters) ability to generate accurate reason-
ing steps on word-based maths problems in the
GSM8K dataset [95]. Whilst fine-tuning on in-
termediate steps (“process-based”) performs simi-
larly to using only final answers (“outcome-based”)
on final answer correctness, processed-based ap-
proaches are found to generate significantly fewer
errors in reasoning.

Huang et al. [222] take this a step further by
showing that the mathematical reasoning ability
of a PaLM LLM on the GSM8K dataset can be
self-improved through fine-tuning on a dataset of
high-confidence reasoning paths generated by the
same PaLM base model.

Using only prompting, Kojima et al. [273] find
that zero-shot CoT prompting alone significantly
improves the performance of GPT-3 and PaLM
LLMs over standard zero- and few-shot prompting
on the MultiArith and GSM8K datasets. While Li
et al. [312] introduce DIVERSE, a prompting ap-
proach that uses a diverse set of prompts for each
question and a trained verifier (with reasoning step
awareness) to improve further GPT-3.5’s perfor-
mance on GSM8K and other reasoning bench-
marks. Finally, Shridhar et al. [502] take a novel
approach by training new models to break down
a mathematical word problem into Socratic sub-
questions to guide the answer of either other LLMs
or human learners. GPT-3 prompted with these sub-
questions outperforms simple one-shot prompting
on the GSM8K dataset.

Stolfo et al. [525] evaluate a range of LLMs (in-
cluding GPT-3) at mathematical reasoning using
a new framework to understand the causal impact
of different input factors (e.g framing, operands,
and operations). Instruction fine-tuned GPT-3 mod-
els are found to be significantly more robust and
sensitive than the smaller LLMs evaluated.

Other LLM use cases in algorithmic and mathe-
matical reasoning have also been proposed. Gadgil
et al. [159] apply a Codex LLM with prompt en-
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gineering and filtering to the task of mathemati-
cal formalization (in the context of theorem prov-
ing). Webb et al. [595] evaluate GPT-3.5’s capacity
for analogical reasoning using tasks that emulate
Raven’s Standard Progressive Matrices (SPM), let-
ter string analogies, and verbal analogies. GPT-3.5
is shown to generally outperform human partic-
ipants (undergraduates) at matrix reasoning and
verbal analogies, but with more mixed results on
letter string analogies. Yu et al. [654] introduce
the ALERT benchmark to evaluate LLM reason-
ing across ten skills (logistic, causal, common-
sense, abductive, spatial, analogical, argument,
and deductive reasoning, as well as textual entail-
ment and mathematics). Ruis et al. [464] study
LLMs’ capability to interpret implicatures, for ex-
ample, whether they understand the response "I
wore gloves" to the question “Did you leave finger-
prints?” as meaning “No”; finding that lots of mod-
els perform close to random. Finally, Valmeekam
et al. [562] propose a new assessment framework
for common-sense planning and find that existing
LLMs GPT-3.5 and BLOOM perform poorly. Us-
ing the framework for the Blocksworld domain
(planning tasks with different colored blocks on
a surface), the best GPT-3.5 model only came up
with a valid plan 5% of the time, compared to 78%
of human participants.

� Sub-Human-Performance [562, 607]

Existing LLMs struggle to match human
performance on reasoning benchmarks.

Another line of work has investigated the in-
tersection of LLMs and causal reasoning [425,
253]. Kıcıman et al. [286] argue that GPT-3.5/4
outperform existing algorithms in three causal
benchmarks. In contrast, Gao et al. [164] evalu-
ate ChatGPT on three causal reasoning tasks (dis-
tinct from Kıcıman et al. [286]) and find that it
performs rather poorly; further, few-shot and chain-
of-thought prompting sometimes further exacer-
bates its performance. Srivastava et al. [519] pro-
pose 14 causal reasoning tasks, some of which are
considered to be very hard [534]. Similarly, Jin
et al. [244] curate another causal inference task
and posit that current LLMs still fail to general-
ize. Lampinen et al. [288] study whether LLMs
can generalize causal intervention strategies from
few-shot examples. Willig et al. [607] conjec-
ture that current LLMs are “causal parrots”, simply

reciting causal knowledge embedded in their data
rather than doing causal reasoning [253].

Overall, while LLMs show some capacity for
more complex reasoning, the relatively poor per-
formance of LLMs on a number of reasoning tasks
and benchmarks [562, 164, 244] stands in contrast
to the often human level performance being seen
in other capabilities [61, 263].

3.9 Robotics and Embodied Agents

LLMs have also started to be incorporated into
robotics applications to provide high-level planning
and contextual knowledge.

Ahn et al. [14] implement a PaLM-540B LLM in
the SayCan architecture to break down high-level
text-based instructions into a sequence of lower-
level robot tasks that can be executed. The authors
use the LLM to propose possible next actions via it-
eratively scoring the most likely of a defined set of
low-level tasks based on the high-level text input.
The low-level task to be executed is then deter-
mined by combining the low-level tasks proposed
by the LLM with affordance functions which de-
termine the probability of the robot completing the
task given the current low-level context.

Driess et al. [129] take this concept a step fur-
ther by combining the PaLM-540B LLM with ad-
ditional input modalities (22B parameter vision
transformer) to create the PaLM-E model. By in-
troducing images into the input, the PaLM-E model
can predict which low-level tasks are possible given
the current state, whether the previous low-level
tasks executed failed, and incorporate images into
long-horizon planning, allowing it to outperform
the original SayCan results.

Another approach has been to use LLMs to gen-
erate code for robotics tasks. Vemprala et al. [564]
combine ChatGPT with a pre-defined high-level
function library of robotic capabilities for human
on the loop robotics tasks. By providing details of
the function library in the prompt, ChatGPT is then
shown to be able to break down high-level natu-
ral language instructions into a set of lower-level
function calls, which can then be executed on the
robot if the human is satisfied it is accurate. This is
another example of the API definition 13 approach,
also used in computer programming [532]. Other
related works that use LLMs to generate code for
robotics applications include using an LLM for hi-
erarchical code generation to write robot policies
(Codex) [316], to generate code policies and main-
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tain a written state (GPT-3.5) [647], and using an
LLM for code-based task planning (GPT-3, Codex)
[510].

Finally, LLMs have also been combined with
modality-to-text pre-processing to provide the
LLM with additional input from the robot’s en-
vironment. Liu et al. [338] use GPT-4 as part of the
REFLECT framework for detecting and explaining
robot failures. To achieve this, multi-modal sensory
inputs are first converted into a text-based hierar-
chical summary at the sensory, event, and sub-goal
levels. The hierarchical summary then prompts
the LLM to detect and analyze failures. Similarly,
Huang et al. [225] combine an LLM (InstructGPT,
PaLM) with multiple sources of text-based environ-
ment feedback for robotic task planning.

� Single Modality [338, 14, 564]

While LLMs can help robots or agents un-
derstand instructions and add high-level
planning capabilities, their inability to di-
rectly learn from image, audio or other sen-
sor modalities constrain their applications.

For agents in simulated worlds, Wang et al.
[579] use the GPT-4 LLM within their VOYAGER
framework to create a Minecraft agent that can
autonomously explore, acquire new skills and com-
plete tasks. First, they use GPT-4 to propose new
tasks for the agent to complete as part of the au-
tomatic curriculum. Then, they ask it to generate
code to solve the proposed task given the current
state to add to its skills library, which can then be
used in the future (similar to the API approach 13
used by Vemprala et al. [564]). Finally, the authors
use GPT-4 to verify whether the executed code
has achieved the proposed task. This framework
outperforms prompting approaches such as ReAct,
Reflexion, and AutoGPT (Sec. 2.7).

Prior work using LLMs for planning in simu-
lated worlds include: Wang et al. [591] using GPT-
3 for Minecraft, Huang et al. [224] using GPT-3
and Codex in VirtualHome, and Nottingham et al.
[389] using Codex for Minecraft.

3.10 Social Sciences & Psychology

The rapid advancements of LLMs have fostered the
use of such models across research in the psycho-
logical and behavioral sciences. Reviewing the ex-
isting literature, we have identified three main areas
and tasks in which LLMs have been used in the con-

Using LLMs to model 
human behavior

Analyzing behavioral 
character istics of LLMs

Simulating social 
relationships with LLMs

LLMs in the Social Sciences &  Psychology

Milgram Shock Exper iment Big Five personality traits Interacting ar tificial agents

I llusory Truth Effect Guilford's Alternative Uses LLMs to simulate societies

Figure 15: Use cases of LLMs in the social sci-
ences and psychology can mainly be structured into
three categories: using LLMs to model human behav-
ior [e.g., 12, 211], analyzing behavioral characteristics
of LLMs [e.g., 414], and using LLMs to simulate social
relationships [e.g., 408].

text of the psychological and behavioral sciences:
using LLMs to simulate human behavioral experi-
ments [e.g., 22, 176, 211, 614, 126], analyzing the
personality traits of LLMs [e.g., 367, 414, 470],
and employing them as artificial agents to model
social relationships [409]. See Fig. 15 for an illus-
tration.

3.10.1 Modeling Human Behavior
In the behavioral sciences, there is an increasing
interest in using LLMs as models for psychological
experiments. Being able to model human behavior
computationally through language models would
entail a variety of advantages over using human
participants: experiments with LLMs are cheaper,
faster, can be scaled easier, and are potentially less
sensitive to ethical considerations [176]. In light
of this, various works have compared LLMs with
human participants from a behavioral perspective.

Argyle et al. [22] demonstrate how LLMs can
generate responses corresponding to virtual partici-
pants in behavioral experiments. They do so by us-
ing LLMs to generate samples of responses to stud-
ies related to political opinions and voting behavior.
In particular, the authors investigate three studies:
the first asks participants to list words associated
with outgroup partisans, and the second and third
focus on vote prediction based on demographics.
Across scenarios, experimental results demonstrate
that GPT-3 provides answers that closely align with
human responses.

Horton [211] argue that LLMs can be used
to computationally model human behavior and
demonstrate such an ability in economics by ex-
ploring their behavior in economic scenarios. They
conducted four experiments focusing on economic
decision-making using GPT-3, showing that the
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LLM can approximately replicate results obtained
with human individuals.

Griffin et al. [176] investigate the suitability of
LLMs to model psychological change. In their
study, the authors assess LLM responses to two
behavioral tests, the illusory truth effect [ITE; 194]
and an experiment measuring the influence of pop-
ulist news to change in political views [55]. The
results demonstrate that in both scenarios, human
judgments tend to align with LLM-based judg-
ments, indicating that LLMs have the potential to
model the effect of influence on human individuals.

Aher et al. [12] introduce the Turing Experiment
(TE) to measure an LLM’s suitability to model hu-
man behavior. A TE consists of inputs to the LLM
that signal a certain demographic (e.g., names or
occupations) as well as a set of experimental de-
tails and corresponding outputs used to simulate
human behavior. The authors apply their approach
to four individual tests, namely an ultimatum game
from behavioral economics [214, 279], garden-path
sentences used in psycholinguistics [89, 411], the
Milgram Shock Experiment from social psychol-
ogy [364], and the wisdom of crowds task used to
measure collective social intelligence [375]. De-
mographic details are simulated via gender titles
and surnames. The results show that LLMs largely
align with human behavior across the tests. How-
ever, the authors note that LLM size matters and
that larger models tend to provide results that are
more aligned with human responses.

Aher et al. [12] point out that the LLMs were
most likely exposed to the four behavioral exper-
iments during their pre-training. To account for
that, the authors create artificial variations of the
experiments with conditions that differ from previ-
ous studies. Additionally, the authors note that a
potential risk with using LLMs to simulate human
responses is the introduction of generations that
contain biases stemming from the models’ training
data.

� Social Biases [12, 367]

Unbalanced views and opinions in the train-
ing data skew the LLMs towards biased hu-
man behaviors.

Park et al. [409] replicate a set of 8 psycho-
logical studies from the Many Labs 2 project [270]
using GPT-3 to assess the LLM for its ability to sim-
ulate human behavioral data. Such studies include

tests in which subjects are asked to choose between
a kiss from a favorite movie star and $50 [462]
and where subjects had to decide between paying
a traffic violation fine and going to court [461].
These experiments show that GPT-3 replicates only
37.5% of the effects obtained from human partic-
ipants. The authors argue that these results are
attributed to humans and LLMs representing inher-
ently different cognitive systems.

Maddela et al. [353] study identifying unhelpful
thought patterns and possible reframings to facil-
itate mental health. They release a dataset called
PATTERNREFRAME and evaluate GPT-3.5 on it,
showing that it can perform very well without ad-
ditional training. They conclude that practitioners
of cognitive behavioral therapy may benefit from
using LLMs to produce richer training material.

3.10.2 Analyzing Behavioral Characteristics
of LLMs

In addition to using LLMs as models for human
behavior, various existing works study LLMs by
analyzing their personality traits.

Jiang et al. [242] do so by introducing the Ma-
chine Personality Inventory (MPI) dataset, a col-
lection of items to assess personalities according
to the Big Five personality factors: extraversion,
agreeableness, openness, conscientiousness, and
neuroticism [358].

Miotto et al. [367] assess GPT-3’s personalities
using the HEXACO [27] and Human Values [488]
scales. Their experimental results reveal that GPT-
3 obtains personality and value scores that align
with human participants. Miotto et al. [367] provide
an extensive analysis of varying temperature values
used to prompt the LLM, finding that an increased
temperature yields changes in the model’s person-
alities, e.g., GPT-3 shows a higher unwillingness to
manipulate as well as increased scores on anxiety.
Similar results were obtained concerning the Hu-
man Values scale, where model responses varied
substantially for different temperature values.

In line with this work, Pellert et al. [414] ar-
gue that LLMs possess psychological traits as ob-
served in human individuals and can be assessed
through psychometric tests. The authors conduct
experiments measuring, among others, the Big Five
personality traits in a zero-shot setup. In contrast,
to Miotto et al. [367], Pellert et al. [414] investi-
gate smaller models based on BERT and find that
different variants of BERT score across the five
personalities in a fairly homogeneous fashion, with
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traits that are high on agreeableness and extraver-
sion, but low on neuroticism.

In a related fashion, Stevenson et al. [523] as-
sess LLM performance (GPT-3) on the Guilford’s
Alternative Uses Test [AUT; 181], a test to assess
human creativity. The test asks participants to sug-
gest uses for physical objects (e.g., a book or a
fork). Comparing the AUT test performance of
GPT-3 to that of psychology students, the authors
found that human responses score higher on orig-
inality and surprise, whereas GPT-3’s responses
were more useful.

Kosinski [277] test Theory of Mind (ToM) in
LLMs. ToM refers to the ability to track others’
unobservable mental states, such as intentions, be-
liefs, or desires. The authors find that among
LLMs of the GPT family, recent models can in-
creasingly solve ToM tasks without having been
explicitly trained to do so. For instance, while GPT-
2 shows virtually no capability of solving ToM
tasks, GPT-3.5 (based on InstructGPT) and GPT-4
performed similarly to 6- and 7-year-old children,
respectively. Gandhi et al. [162] present a template-
based framework for generating synthetic samples
to evaluate ToM in LLMs, which are then applied to
five recently developed LLMs (incl. GPT-3, GPT-
4, LLaMA, and Claude). The authors show that
most models struggle with ToM in its basic forms.
However, GPT-4 performs closest to the human
comparison of all tested models.

3.10.3 Simulating Social Relationships

While most previous works measure LLMs as mod-
els for human behavior through replicating human
behavioral studies, Park et al. [408] use the power
of LLMs to model the interaction between artificial
agents. The authors model a community of 25 ar-
tificial agents interacting in a digital environment
to achieve this. Each character has unique traits,
and the characters interact with each other through
natural language. Simulating such societies, the
authors observe emergent social behaviors (e.g.,
forming new relationships and attending events)
between agents that are formed without any human
interaction.

3.11 Synthetic Data Generation

The ability of LLMs to perform in-context learning
allows them to be prompted to generate synthetic
datasets for training much smaller domain-specific
models.

LLM
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Output
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Prompt
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  display: grid;
…….

Code -> Modality
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Latex - TikZ
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to-X 
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Figure 16: Modality Conversion. Illustration of us-
ing models with other input modalities as pre or post-
processing steps in an LLM pipeline [148, 329, 338,
225, 315]. For some use cases, this approach can be
used as an alternative to training a multi-modal model
or using a shared embedding space.

Wang et al. [583] propose using GPT-3 to label
datasets more cost-effectively than human labelers.
These labeled datasets can then be used to train
more compute-efficient smaller models. To evalu-
ate this approach, RoBERTa and PEGASUS mod-
els are trained for 9 NLP tasks using human and
GPT-3 generated labels. GPT-3 labels are shown
to outperform human labels when labeling budgets
are small, but higher-quality human labels tend to
lead to better models at higher labeling budgets.

Similarly, Ding et al. [123] propose three prompt-
ing approaches for training data generation with
GPT-3: unlabeled data annotation (generate labels
for known examples), training data generation (gen-
erate examples and labels), and assisted training
data generation (with Wikidata provided as addi-
tional context). Fine-tuning a smaller BERT model
for text classification and NER tasks using these
approaches showed results similar to or worse than
using GPT-3 directly.

Gunasekar et al. [182] leverage synthetic data
generation with GPT-3.5 to train a new code gen-
eration LLM (see Sec. 3.3.1). The generated data
consists of synthetic Python textbooks focusing on
reasoning, basic algorithmic skills, and synthetic
Python exercises. One important finding of this
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work is that introducing randomness into data gen-
eration is crucial, all while ensuring the examples
maintain their quality and coherence.

Yoo et al. [648] propose GPT3Mix to generate
additional synthetic data from an existing dataset
for classification tasks. GPT3Mix uses GPT-3
with a prompt containing real examples from the
dataset and a task specification to create synthetic
examples and pseudo-labels jointly. This new aug-
mented dataset is then used to fine-tune BERT and
DistilBERT models. This method combines data
augmentation approaches with knowledge distilla-
tion by training smaller classification models using
soft labels.

Bonifacio et al. [51] propose InPars, a method
for using LLMs to generate synthetic retrieval ex-
amples for fine-tuning on information retrieval
tasks. GPT-3 is few-shot prompted to generate a rel-
evant question for a randomly sampled document
along with the question’s associated probability. A
smaller monoT5 model is then fine-tuned using
this dataset to rank relevant documents for a given
question. The fine-tuned model outperforms only
pre-trained models but performs worse than models
fine-tuned using the existing MS MARCO training
dataset [32].

Dai et al. [104] introduce AugGPT, which uses
ChatGPT (GPT-3.5) to augment each example in
a small base dataset with six additional rephrased
synthetic examples. This new augmented dataset is
then used to fine-tune a specialized BERT model.
This approach outperforms existing augmentation
approaches, such as word and character substitu-
tion.

Finally, instead of generating synthetic data to
achieve a specialized task, Shridhar et al. [503] pro-
pose Decompositional Distillation, which aims to
use synthetic data to replicate in smaller models the
multi-step reasoning capabilities, such as CoT, that
emerge in larger LLMs. First, GPT-3 is used with a
manually designed few-shot prompt to decompose
a problem into (sub-question, sub-solution) pairs.
This synthetic sub-question dataset is then used
to fine-tune a T5 problem decomposer to generate
sub-questions. Finally, a GPT-2 problem solver
is fine-tuned to provide the sub-solutions to the
teacher-generated sub-questions.

Overall, while LLM-generated synthetic data
can potentially bring significant cost benefits, the
greater its role, the higher the potential for it to fail
to capture the true distribution and potentially lead

to model collapse [506].

� Hallucinated Distributions [506]

Using LLMs for fully synthetic data genera-
tion is currently constrained by our inability
to verify whether the synthetic data gener-
ated is representative of the true distribution
in the corresponding real-world data.

In cases where the LLM is only used to label
existing data [583, 123] this will likely reduce
the risk of generating an unrepresentative training
distribution (although hallucinated labels remain
an issue). Where the LLM is used to generate
(or partially generate) both the input and the tar-
get [123, 104, 182, 51, 503] the issue of halluci-
nated distributions becomes potentially significant.

4 Related Work

Closest to ours is the concurrent work by Zhao
et al. [673], who provide an extensive survey of
large language models and associated topics. Mi-
alon et al. [363] focus on surveying augmented
language models, i.e., “language models with rea-
soning skills and the ability to use tools”. Tornede
et al. [555] survey LLMs in the context of AutoML
methods, highlighting existing methods and chal-
lenges in leveraging these for improving LLMs.
Tang et al. [539] survey LLM-generated text de-
tection techniques. Chang et al. [72] concurrently
survey evaluation tasks of LLMs.

The literature also contains several previous sur-
veys and evaluations specific to individual applica-
tion domains that reference LLMs, including: chat-
bots [345], computational biology [558, 217], com-
puter programming [499], medicine [381, 610, 590,
381], law [101, 531], knowledge work [140, 621],
and reasoning [223].

5 Conclusion

In this work, we identify several unsolved chal-
lenges of large language models, provide an
overview of their current applications, and discuss
how the former constrain the latter. By highlighting
the limitations of existing methods, we hope to fos-
ter future research addressing these. We also hope
that by providing an overview of the approaches
used in different applied areas, we can facilitate
the transfer of ideas between domains and target
further research.
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[272] J. Kocoń, I. Cichecki, O. Kaszyca, M. Kochanek, D. Szy-
dło, J. Baran, J. Bielaniewicz, M. Gruza et al. 2023. Chat-
gpt: Jack of all trades, master of none.

[273] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo and Y. Iwasawa.
2022. Large language models are zero-shot reasoners. In
Advances in Neural Information Processing Systems.

[274] A. Köpf, Y. Kilcher, D. von Rütte, S. Anagnostidis, Z.-
R. Tam, K. Stevens, A. Barhoum, N. M. Duc et al. 2023.
Openassistant conversations–democratizing large language
model alignment. arXiv preprint arXiv:2304.07327.

58

https://twitter.com/jefrankle/status/1577313906250465282
https://twitter.com/jefrankle/status/1577313906250465282
https://twitter.com/jefrankle/status/1577313906250465282
https://twitter.com/jefrankle/status/1577313906250465282
https://twitter.com/jefrankle/status/1577313906250465282
https://twitter.com/jefrankle/status/1577313906250465282
https://twitter.com/jefrankle/status/1577313906250465282
https://aclanthology.org/2022.cltw-1.8
https://aclanthology.org/2022.cltw-1.8
https://doi.org/10.48550/arXiv.2304.08442
https://doi.org/10.48550/arXiv.2304.08442
https://doi.org/10.48550/arXiv.2307.06440
https://doi.org/10.48550/arXiv.2307.06440
https://doi.org/10.48550/arXiv.2307.06440
https://openreview.net/forum?id=vDeh2yxTvuh
https://openreview.net/forum?id=vDeh2yxTvuh
https://proceedings.neurips.cc/paper/2021/hash/d02e9bdc27a894e882fa0c9055c99722-Abstract.html
https://doi.org/10.18653/v1/2021.acl-short.87
https://doi.org/10.18653/v1/2021.acl-short.87
https://doi.org/10.18653/v1/2021.acl-short.87
https://twitter.com/karpathy/status/1657949234535211009?s=20
https://doi.org/10.48550/arXiv.2212.14024
https://doi.org/10.48550/arXiv.2212.14024
https://doi.org/10.48550/arXiv.2212.14024
https://aclanthology.org/2022.coling-1.479
https://aclanthology.org/2022.coling-1.479
https://aclanthology.org/2022.coling-1.479
https://doi.org/https://doi.org/10.1002/prot.26202
https://doi.org/https://doi.org/10.1002/prot.26202
https://doi.org/https://doi.org/10.1002/prot.26202
http://arxiv.org/abs/2301.10226
http://arxiv.org/abs/2301.10226
http://arxiv.org/abs/2306.04634
http://arxiv.org/abs/2306.04634
https://doi.org/10.48550/ARXIV.2211.15533
https://doi.org/10.48550/ARXIV.2211.15533
https://doi.org/10.48550/ARXIV.2302.10724
https://doi.org/10.48550/ARXIV.2302.10724
https://openreview.net/forum?id=e2TBb5y0yFf


[275] T. Korbak, K. Shi, A. Chen, R. Bhalerao, C. L. Buckley,
J. Phang, S. R. Bowman and E. Perez. 2023. Pretraining
language models with human preferences. arXiv preprint
arXiv:2302.08582.

[276] D. M. Korngiebel and S. D. Mooney. 2021. Consider-
ing the possibilities and pitfalls of generative pre-trained
transformer 3 (gpt-3) in healthcare delivery. NPJ Digital
Medicine, 4(1):1–3.

[277] M. Kosinski. 2023. Theory of mind may have sponta-
neously emerged in large language models.

[278] B. Krause, A. D. Gotmare, B. McCann, N. S. Keskar,
S. Joty, R. Socher and N. F. Rajani. 2021. GeDi: Genera-
tive discriminator guided sequence generation. In Findings
of the Association for Computational Linguistics: EMNLP
2021, pages 4929–4952, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

[279] D. C. Krawczyk. 2018. Introduction to reasoning. Rea-
soning—The Neuroscience of How We Think; Academic
Press: Cambridge, MA, USA, pages 1–11.

[280] K. Krishna, Y. Song, M. Karpinska, J. Wieting and
M. Iyyer. 2023. Paraphrasing evades detectors of AI-
generated text, but retrieval is an effective defense.
ArXiv:2303.13408 [cs].

[281] T. Kudo. 2018. Subword regularization: Improving neu-
ral network translation models with multiple subword can-
didates. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 66–75, Melbourne, Australia. Associ-
ation for Computational Linguistics.

[282] T. Kudo and J. Richardson. 2018. Sentencepiece: A
simple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226.

[283] A. Kulkarni. 2021. GitHub Copilot AI Is Leaking Func-
tional API Keys.

[284] S. R. Künzel, J. S. Sekhon, P. J. Bickel and B. Yu. 2019.
Metalearners for estimating heterogeneous treatment ef-
fects using machine learning. Proceedings of the national
academy of sciences, 116(10):4156–4165.

[285] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. Yu,
J. Gonzalez, H. Zhang et al. 2023. vllm: Easy, fast, and
cheap llm serving with pagedattention.

[286] E. Kıcıman, R. Ness, A. Sharma and C. Tan. 2023.
Causal reasoning and large language models: Opening
a new frontier for causality.

[287] P. Lab. 2023. Awesome-Prompt-Engineering. Original-
date: 2023-02-09T18:22:52Z.

[288] A. K. Lampinen, S. C. Chan, I. Dasgupta, A. J. Nam
and J. X. Wang. 2023. Passive learning of active causal
strategies in agents and language models. arXiv preprint
arXiv:2305.16183.

[289] H. Laurençon, L. Saulnier, T. Wang, C. Akiki, A. V. del
Moral, T. L. Scao, L. V. Werra, C. Mou et al. 2022. The big-
science ROOTS corpus: A 1.6TB composite multilingual
dataset. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

[290] A. Lazaridou, E. Gribovskaya, W. Stokowiec and
N. Grigorev. 2022. Internet-augmented language mod-
els through few-shot prompting for open-domain question
answering.

[291] A. Lee, B. Miranda and S. Koyejo. 2023. Beyond Scale:
the Diversity Coefficient as a Data Quality Metric Demon-
strates LLMs are Pre-trained on Formally Diverse Data.
ArXiv:2306.13840 [cs].

[292] D. Lee, J. Lee, J.-W. Ha, J.-H. Kim, S.-W. Lee,
H. Lee and H. O. Song. 2023. Query-efficient black-box
red teaming via bayesian optimization. arXiv preprint
arXiv:2305.17444.

[293] K. Lee, O. Firat, A. Agarwal, C. Fannjiang and D. Sus-
sillo. 2018. Hallucinations in neural machine translation.

[294] K. Lee, D. Ippolito, A. Nystrom, C. Zhang, D. Eck,
C. Callison-Burch and N. Carlini. 2021. Deduplicating
training data makes language models better. arXiv preprint
arXiv:2107.06499.

[295] N. Lee, W. Ping, P. Xu, M. Patwary, P. Fung, M. Shoeybi
and B. Catanzaro. Factuality Enhanced Language Models
for Open-Ended Text Generation.

[296] P. Lee, S. Bubeck and J. Petro. 2023. Benefits, limits,
and risks of gpt-4 as an ai chatbot for medicine. New
England Journal of Medicine, 388(13):1233–1239.

[297] E. Lehman, E. Hernandez, D. Mahajan, J. Wulff, M. J.
Smith, Z. Ziegler, D. Nadler, P. Szolovits et al. 2023. Do
we still need clinical language models?

[298] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang,
M. Krikun, N. Shazeer et al. 2020. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding.

[299] B. Lester, R. Al-Rfou and N. Constant. 2021. The power
of scale for parameter-efficient prompt tuning. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3045–3059, On-
line and Punta Cana, Dominican Republic. Association for
Computational Linguistics.

[300] Y. Leviathan, M. Kalman and Y. Matias. 2022. Fast in-
ference from transformers via speculative decoding. arXiv
preprint arXiv:2211.17192.

[301] D. M. Levine, R. Tuwani, B. Kompa, A. Varma, S. G.
Finlayson, A. Mehrotra and A. Beam. 2023. The diagnostic
and triage accuracy of the gpt-3 artificial intelligence model.
medRxiv, pages 2023–01.

[302] M. Lewis, S. Bhosale, T. Dettmers, N. Goyal and
L. Zettlemoyer. 2021. Base layers: Simplifying training of
large, sparse models.

[303] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov and L. Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 7871–
7880, Online. Association for Computational Linguistics.

[304] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis et al. 2020. Retrieval-
augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems,
33:9459–9474.

59

http://arxiv.org/abs/2302.02083
http://arxiv.org/abs/2302.02083
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
http://arxiv.org/abs/2303.13408
http://arxiv.org/abs/2303.13408
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://analyticsdrift.com/github-copilot-ai-is-leaking-functional-api-keys/
https://analyticsdrift.com/github-copilot-ai-is-leaking-functional-api-keys/
https://vllm.ai/
https://vllm.ai/
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2305.00050
https://github.com/promptslab/Awesome-Prompt-Engineering
https://openreview.net/forum?id=UoEw6KigkUn
https://openreview.net/forum?id=UoEw6KigkUn
https://openreview.net/forum?id=UoEw6KigkUn
http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2203.05115
http://arxiv.org/abs/2306.13840
http://arxiv.org/abs/2306.13840
http://arxiv.org/abs/2306.13840
https://doi.org/10.48550/ARXIV.2302.08091
https://doi.org/10.48550/ARXIV.2302.08091
https://doi.org/10.48550/ARXIV.2006.16668
https://doi.org/10.48550/ARXIV.2006.16668
https://doi.org/10.48550/ARXIV.2006.16668
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.48550/ARXIV.2103.16716
https://doi.org/10.48550/ARXIV.2103.16716
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


[305] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer,
H. Michalewski, V. Ramasesh, A. Slone, C. Anil et al.
2022. Solving quantitative reasoning problems with lan-
guage models.

[306] B. Z. Li, M. Nye and J. Andreas. 2021. Implicit repre-
sentations of meaning in neural language models. arXiv
preprint arXiv:2106.00737.

[307] C. Li, A. A. Awan, H. Tang, S. Rajbhandari and Y. He.
2021. 1-bit lamb: Communication efficient large-scale
large-batch training with lamb’s convergence speed. arXiv
preprint arXiv:2104.06069.

[308] D. Li, R. Shao, A. Xie, Y. Sheng, L. Zheng, J. E. Gonza-
lez, I. Stoica, X. Ma et al. 2023. How long can open-source
llms truly promise on context length?

[309] H. Li, D. Guo, W. Fan, M. Xu and Y. Song. 2023. Multi-
step jailbreaking privacy attacks on chatgpt. arXiv preprint
arXiv:2304.05197.

[310] R. Li, J. Su, C. Duan and S. Zheng. 2020. Linear at-
tention mechanism: An efficient attention for semantic
segmentation. arXiv preprint arXiv:2007.14902.

[311] X. L. Li and P. Liang. 2021. Prefix-tuning: Optimizing
continuous prompts for generation. In Proceedings of the
59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers),
pages 4582–4597, Online. Association for Computational
Linguistics.

[312] Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou and
W. Chen. 2022. On the advance of making language mod-
els better reasoners.

[313] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrit-
twieser, R. Leblond, T. Eccles, J. Keeling et al. 2022.
Competition-level code generation with alphacode. Sci-
ence, 378(6624):1092–1097.

[314] Z. Li, C. You, S. Bhojanapalli, D. Li, A. S. Rawat, S. J.
Reddi, K. Ye, F. Chern et al. 2023. The Lazy Neuron
Phenomenon: On Emergence of Activation Sparsity in
Transformers. ArXiv:2210.06313 [cs, stat].

[315] L. Lian, B. Li, A. Yala and T. Darrell. 2023. Llm-
grounded diffusion: Enhancing prompt understanding of
text-to-image diffusion models with large language models.

[316] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter,
P. Florence and A. Zeng. 2023. Code as policies: Language
model programs for embodied control.

[317] P. P. Liang, C. Wu, L.-P. Morency and R. Salakhutdi-
nov. 2021. Towards understanding and mitigating social
biases in language models. In International Conference on
Machine Learning, pages 6565–6576. PMLR.

[318] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu,
M. Yasunaga, Y. Zhang, D. Narayanan et al. 2022.
Holistic evaluation of language models. arXiv preprint
arXiv:2211.09110.

[319] O. Lieber, O. Sharir, B. Lenz and Y. Shoham. 2021.
Jurassic-1: Technical details and evaluation. White Paper.
AI21 Labs, 1.

[320] V. Liévin, C. E. Hother and O. Winther. 2022. Can large
language models reason about medical questions? arXiv
preprint arXiv:2207.08143.

[321] C.-C. Lin, A. Jaech, X. Li, M. R. Gormley and J. Eis-
ner. 2020. Limitations of autoregressive models and their
alternatives. arXiv preprint arXiv:2010.11939.

[322] J. Lin, A. Yang, J. Bai, C. Zhou, L. Jiang, X. Jia,
A. Wang, J. Zhang et al. 2021. M6-10t: A sharing-
delinking paradigm for efficient multi-trillion parameter
pretraining. arXiv preprint arXiv:2110.03888.

[323] S. Lin, J. Hilton and O. Evans. 2021. Truthfulqa:
Measuring how models mimic human falsehoods. arXiv
preprint arXiv:2109.07958.

[324] X. V. Lin, T. Mihaylov, M. Artetxe, T. Wang, S. Chen,
D. Simig, M. Ott, N. Goyal et al. 2022. Few-shot learning
with multilingual generative language models. In Pro-
ceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 9019–9052, Abu
Dhabi, United Arab Emirates. Association for Computa-
tional Linguistics.

[325] Y.-T. Lin and Y.-N. Chen. 2023. Llm-eval: Unified
multi-dimensional automatic evaluation for open-domain
conversations with large language models. arXiv preprint
arXiv:2305.13711.

[326] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, A. dos
Santos Costa, M. Fazel-Zarandi et al. 2022. Language
models of protein sequences at the scale of evolution enable
accurate structure prediction. BioRxiv.

[327] W. Ling, D. Yogatama, C. Dyer and P. Blunsom. 2017.
Program induction by rationale generation: Learning to
solve and explain algebraic word problems. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
158–167, Vancouver, Canada. Association for Computa-
tional Linguistics.

[328] B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy and
C. Zhang. 2023. Exposing Attention Glitches with Flip-
Flop Language Modeling. ArXiv:2306.00946 [cs].

[329] F. Liu, J. M. Eisenschlos, F. Piccinno, S. Krichene,
C. Pang, K. Lee, M. Joshi, W. Chen et al. 2022. Deplot:
One-shot visual language reasoning by plot-to-table trans-
lation. arXiv preprint arXiv:2212.10505.

[330] H. Liu, C. Sferrazza and P. Abbeel. 2023. Languages
are rewards: Hindsight finetuning using human feedback.
arXiv preprint arXiv:2302.02676.

[331] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang,
M. Bansal and C. A. Raffel. 2022. Few-shot parameter-
efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Sys-
tems, 35:1950–1965.

[332] H. Liu, S. M. Xie, Z. Li and T. Ma. 2022. Same pre-
training loss, better downstream: Implicit bias matters for
language models. ArXiv, abs/2210.14199.

[333] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua,
F. Petroni and P. Liang. 2023. Lost in the Middle: How
Language Models Use Long Contexts. ArXiv:2307.03172
[cs].

[334] R. Liu, C. Jia, J. Wei, G. Xu and S. Vosoughi. 2022.
Quantifying and alleviating political bias in language mod-
els. Artificial Intelligence, 304:103654.

60

https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2206.14858
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.48550/ARXIV.2206.02336
https://doi.org/10.48550/ARXIV.2206.02336
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2305.13655
http://arxiv.org/abs/2305.13655
http://arxiv.org/abs/2305.13655
http://arxiv.org/abs/2209.07753
http://arxiv.org/abs/2209.07753
https://aclanthology.org/2022.emnlp-main.616
https://aclanthology.org/2022.emnlp-main.616
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
http://arxiv.org/abs/2306.00946
http://arxiv.org/abs/2306.00946
https://doi.org/10.48550/arXiv.2307.03172
https://doi.org/10.48550/arXiv.2307.03172


[335] R. Liu and N. B. Shah. 2023. ReviewerGPT? An Ex-
ploratory Study on Using Large Language Models for Pa-
per Reviewing. ArXiv:2306.00622 [cs].

[336] S. Liu and Z. Wang. 2023. Ten lessons we have learned
in the new" sparseland": A short handbook for sparse neu-
ral network researchers. arXiv preprint arXiv:2302.02596.

[337] X. Liu, X. Yang, L. Ouyang, G. Guo, J. Su, R. Xi,
K. Yuan and F. Yuan. 2022. Protein language model
predicts mutation pathogenicity and clinical prognosis.
bioRxiv, pages 2022–09.

[338] Z. Liu, A. Bahety and S. Song. 2023. Reflect: Summa-
rizing robot experiences for failure explanation and correc-
tion.

[339] Z. Liu, E. Gan and M. Tegmark. 2023. Seeing is be-
lieving: Brain-inspired modular training for mechanistic
interpretability. arXiv preprint arXiv:2305.08746.

[340] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung,
Y. Tay, D. Zhou, Q. V. Le et al. 2023. The flan collec-
tion: Designing data and methods for effective instruction
tuning.

[341] S. Longpre, G. Yauney, E. Reif, K. Lee, A. Roberts,
B. Zoph, D. Zhou, J. Wei et al. 2023. A Pretrainer’s Guide
to Training Data: Measuring the Effects of Data Age, Do-
main Coverage, Quality, & Toxicity. ArXiv:2305.13169
[cs].

[342] Y. Lu, M. Bartolo, A. Moore, S. Riedel and P. Stene-
torp. 2022. Fantastically ordered prompts and where to
find them: Overcoming few-shot prompt order sensitivity.
In Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 8086–8098, Dublin, Ireland. Association
for Computational Linguistics.

[343] Y. Lu, C. Li, M. Zhang, C. De Sa and Y. He. 2022. Max-
imizing communication efficiency for large-scale training
via 0/1 adam. arXiv preprint arXiv:2202.06009.

[344] N. Lukas, A. Salem, R. Sim, S. Tople, L. Wutschitz
and S. Zanella-Béguelin. 2023. Analyzing Leakage of
Personally Identifiable Information in Language Models.
ArXiv:2302.00539 [cs].

[345] B. Luo, R. Y. Lau, C. Li and Y.-W. Si. 2022. A critical
review of state-of-the-art chatbot designs and applications.
Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 12(1):e1434.

[346] Y. Luo, N. Tang, G. Li, C. Chai, W. Li and X. Qin. 2021.
Synthesizing natural language to visualization (nl2vis)
benchmarks from nl2sql benchmarks. In Proceedings of
the 2021 International Conference on Management of Data,
pages 1235–1247.

[347] A. Lynch, G. J. Dovonon, J. Kaddour and R. Silva. 2023.
Spawrious: A benchmark for fine control of spurious cor-
relation biases. arXiv preprint arXiv:2303.05470.

[348] P. Ma, Z. Li, A. Sun and S. Wang. 2023. "oops, did i just
say that?" testing and repairing unethical suggestions of
large language models with suggest-critique-reflect process.
arXiv preprint arXiv:2305.02626.

[349] X. Ma, G. Fang and X. Wang. 2023. Llm-pruner: On the
structural pruning of large language models. arXiv preprint
arXiv:2305.11627.

[350] X. Ma, X. Kong, S. Wang, C. Zhou, J. May, H. Ma
and L. Zettlemoyer. 2021. Luna: Linear unified nested
attention. Advances in Neural Information Processing
Systems, 34:2441–2453.

[351] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao,
S. Wiegreffe, U. Alon, N. Dziri et al. 2023. Self-refine:
Iterative refinement with self-feedback.

[352] A. Madani, B. Krause, E. R. Greene, S. Subramanian,
B. P. Mohr, J. M. Holton, J. L. Olmos Jr, C. Xiong et al.
2023. Large language models generate functional protein
sequences across diverse families. Nature Biotechnology,
pages 1–8.

[353] M. Maddela, M. Ung, J. Xu, A. Madotto, H. Foran
and Y.-L. Boureau. 2023. Training Models to Gen-
erate, Recognize, and Reframe Unhelpful Thoughts.
ArXiv:2307.02768 [cs].

[354] S. Mahdavi, R. Liao and C. Thrampoulidis. 2023. Memo-
rization Capacity of Multi-Head Attention in Transformers.
ArXiv:2306.02010 [cs].

[355] S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee,
D. Chen and S. Arora. 2023. Fine-Tuning Language Mod-
els with Just Forward Passes. ArXiv:2305.17333 [cs].

[356] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada
and S. Paul. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.com/
huggingface/peft.

[357] P. Maniatis and D. Tarlow. 2023. Large sequence
models for software development activities. Available
from: https://ai.googleblog.com/2023/
05/large-sequence-models-for-software.
html. Accessed: 26/06/2023.

[358] R. R. McCrae and P. T. Costa Jr. 1997. Personality trait
structure as a human universal. American psychologist,
52(5):509.

[359] I. R. McKenzie, A. Lyzhov, M. Pieler, A. Parrish,
A. Mueller, A. Prabhu, E. McLean, A. Kirtland et al.
2023. Inverse Scaling: When Bigger Isn’t Better.
ArXiv:2306.09479 [cs].

[360] K. Meng, D. Bau, A. J. Andonian and Y. Belinkov. 2022.
Locating and editing factual associations in GPT. In Ad-
vances in Neural Information Processing Systems.

[361] K. Meng, A. S. Sharma, A. J. Andonian, Y. Belinkov
and D. Bau. 2023. Mass-editing memory in a transformer.
In The Eleventh International Conference on Learning
Representations.

[362] J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song,
M. Chadwick, M. Glaese, S. Young et al. 2022. Teaching
language models to support answers with verified quotes.

[363] G. Mialon, R. Dessì, M. Lomeli, C. Nalmpantis, R. Pa-
sunuru, R. Raileanu, B. Rozière, T. Schick et al. 2023.
Augmented language models: a survey. arXiv preprint
arXiv:2302.07842.

[364] S. Milgram. 1963. Behavioral study of obedience. The
Journal of abnormal and social psychology, 67(4):371.

[365] S. Min, K. Krishna, X. Lyu, M. Lewis, W.-t. Yih, P. W.
Koh, M. Iyyer, L. Zettlemoyer et al. 2023. FActScore:
Fine-grained Atomic Evaluation of Factual Precision in
Long Form Text Generation. ArXiv:2305.14251 [cs].

61

http://arxiv.org/abs/2306.00622
http://arxiv.org/abs/2306.00622
http://arxiv.org/abs/2306.00622
http://arxiv.org/abs/2306.15724
http://arxiv.org/abs/2306.15724
http://arxiv.org/abs/2306.15724
https://doi.org/10.48550/ARXIV.2301.13688
https://doi.org/10.48550/ARXIV.2301.13688
https://doi.org/10.48550/ARXIV.2301.13688
http://arxiv.org/abs/2305.13169
http://arxiv.org/abs/2305.13169
http://arxiv.org/abs/2305.13169
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
http://arxiv.org/abs/2302.00539
http://arxiv.org/abs/2302.00539
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2307.02768
http://arxiv.org/abs/2307.02768
http://arxiv.org/abs/2306.02010
http://arxiv.org/abs/2306.02010
http://arxiv.org/abs/2305.17333
http://arxiv.org/abs/2305.17333
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html
https://doi.org/10.48550/arXiv.2306.09479
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=MkbcAHIYgyS
https://doi.org/10.48550/ARXIV.2203.11147
https://doi.org/10.48550/ARXIV.2203.11147
http://arxiv.org/abs/2305.14251
http://arxiv.org/abs/2305.14251
http://arxiv.org/abs/2305.14251


[366] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis,
H. Hajishirzi and L. Zettlemoyer. 2022. Rethinking the
role of demonstrations: What makes in-context learning
work?

[367] M. Miotto, N. Rossberg and B. Kleinberg. 2022. Who
is gpt-3? an exploration of personality, values and demo-
graphics. arXiv preprint arXiv:2209.14338.

[368] P. Mirowski, K. W. Mathewson, J. Pittman and R. Evans.
2022. Co-writing screenplays and theatre scripts with lan-
guage models: An evaluation by industry professionals.
arXiv preprint arXiv:2209.14958.

[369] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic,
G. Venkatesh, C. Yu and P. Micikevicius. 2021. Ac-
celerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378.

[370] S. Mishra, D. Khashabi, C. Baral and H. Hajishirzi. 2022.
Cross-task generalization via natural language crowdsourc-
ing instructions. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

[371] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning
and C. Finn. 2023. DetectGPT: Zero-Shot Machine-
Generated Text Detection using Probability Curvature.
ArXiv:2301.11305 [cs].

[372] E. Mitchell, C. Lin, A. Bosselut, C. Finn and C. D. Man-
ning. 2022. Fast model editing at scale. In International
Conference on Learning Representations.

[373] E. Mitchell, C. Lin, A. Bosselut, C. D. Manning and
C. Finn. 2022. Memory-based model editing at scale. In
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 15817–15831. PMLR.

[374] R. Moriconi, M. P. Deisenroth and K. Sesh Kumar.
2020. High-dimensional bayesian optimization using low-
dimensional feature spaces. Machine Learning, 109:1925–
1943.

[375] M. Moussaïd, J. E. Kämmer, P. P. Analytis and H. Neth.
2013. Social influence and the collective dynamics of
opinion formation. PloS one, 8(11):e78433.

[376] M. Mozes, J. Hoffmann, K. Tomanek, M. Kouate,
N. Thain, A. Yuan, T. Bolukbasi and L. Dixon. 2023. To-
wards agile text classifiers for everyone. arXiv preprint
arXiv:2302.06541.

[377] N. Muennighoff, T. Wang, L. Sutawika, A. Roberts,
S. Biderman, T. L. Scao, M. S. Bari, S. Shen et al. 2022.
Crosslingual generalization through multitask finetuning.
arXiv preprint arXiv:2211.01786.

[378] S. Mukherjee, A. Mitra, G. Jawahar, S. Agarwal,
H. Palangi and A. Awadallah. 2023. Orca: Progressive
learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707.

[379] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang,
C. Kim, C. Hesse, S. Jain et al. 2021. Webgpt: Browser-
assisted question-answering with human feedback. arXiv
preprint arXiv:2112.09332.

[380] N. Nanda, L. Chan, T. Lieberum, J. Smith and J. Stein-
hardt. 2023. Progress measures for grokking via mechanis-
tic interpretability. In The Eleventh International Confer-
ence on Learning Representations.

[381] S. Nerella, S. Bandyopadhyay, J. Zhang, M. Contreras,
S. Siegel, A. Bumin, B. Silva, J. Sena et al. 2023. Trans-
formers in healthcare: A survey.

[382] A. Nguyen, N. Karampatziakis and W. Chen. 2023. Meet
in the middle: A new pre-training paradigm. arXiv preprint
arXiv:2303.07295.

[383] E. Nguyen, M. Poli, M. Faizi, A. Thomas, C. Birch-
Sykes, M. Wornow, A. Patel, C. Rabideau et al. 2023. Hye-
nadna: Long-range genomic sequence modeling at single
nucleotide resolution. arXiv preprint arXiv:2306.15794.

[384] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam,
P. Mishkin, B. McGrew, I. Sutskever and M. Chen. 2022.
Glide: Towards photorealistic image generation and editing
with text-guided diffusion models.

[385] X. Nie and S. Wager. 2021. Quasi-oracle estimation of
heterogeneous treatment effects. Biometrika, 108(2):299–
319.

[386] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese and C. Xiong. 2022. Codegen: An
open large language model for code with multi-turn pro-
gram synthesis.

[387] F. Niu, B. Recht, C. Re, S. J. Wright and W. D. St. Hog-
wild!: A Lock-Free Approach to Parallelizing Stochastic
Gradient Descent.

[388] H. Nori, N. King, S. M. McKinney, D. Carignan and
E. Horvitz. 2023. Capabilities of gpt-4 on medical chal-
lenge problems.

[389] K. Nottingham, P. Ammanabrolu, A. Suhr, Y. Choi,
H. Hajishirzi, S. Singh and R. Fox. 2023. Do embod-
ied agents dream of pixelated sheep?: Embodied decision
making using language guided world modelling. arXiv
preprint arXiv:2301.12050.

[390] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V.
Bzikadze, A. Mikheenko, M. R. Vollger, N. Altemose et al.
2022. The complete sequence of a human genome. Sci-
ence, 376(6588):44–53.

[391] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski,
J. Austin, D. Bieber, D. Dohan, A. Lewkowycz et al. 2021.
Show your work: Scratchpads for intermediate computa-
tion with language models.

[392] Ofir Press [@OfirPress]. 2022. GPT-3 seems to be
nondeterministic even when it should be (i.e. temper-
ature == 0). Has anyone else noticed this? Is there
a known fix? Video by my collaborator Muru Zhang.
https://t.co/dOWYWPBYyP.

[393] N. Oh, G.-S. Choi and W. Y. Lee. 2023. Chatgpt goes
to operating room: Evaluating gpt-4 performance and its
potential in surgical education and training in the era of
large language models. medRxiv.

[394] C. Olah. Mechanistic Interpretability, Variables, and the
Importance of Interpretable Bases.

62

http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.48550/arXiv.2301.11305
https://doi.org/10.48550/arXiv.2301.11305
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
http://arxiv.org/abs/2307.00067
http://arxiv.org/abs/2307.00067
http://arxiv.org/abs/2112.10741
http://arxiv.org/abs/2112.10741
https://doi.org/10.48550/ARXIV.2203.13474
https://doi.org/10.48550/ARXIV.2203.13474
https://doi.org/10.48550/ARXIV.2203.13474
http://arxiv.org/abs/2303.13375
http://arxiv.org/abs/2303.13375
https://doi.org/10.1126/science.abj6987
https://doi.org/10.48550/ARXIV.2112.00114
https://doi.org/10.48550/ARXIV.2112.00114
https://twitter.com/OfirPress/status/1542610741668093952
https://twitter.com/OfirPress/status/1542610741668093952
https://twitter.com/OfirPress/status/1542610741668093952
https://twitter.com/OfirPress/status/1542610741668093952
https://twitter.com/OfirPress/status/1542610741668093952
https://doi.org/10.1101/2023.03.16.23287340
https://doi.org/10.1101/2023.03.16.23287340
https://doi.org/10.1101/2023.03.16.23287340
https://doi.org/10.1101/2023.03.16.23287340
https://transformer-circuits.pub/2022/mech-interp-essay/index.html
https://transformer-circuits.pub/2022/mech-interp-essay/index.html


[395] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. Das-
Sarma, T. Henighan, B. Mann, A. Askell et al. 2022.
In-context learning and induction heads. arXiv preprint
arXiv:2209.11895.

[396] OpenAI. 2022. Chatgpt: Optimizing language mod-
els for dialogue. https://openai.com/blog/
chatgpt/. Accessed: 2023-02-18.

[397] OpenAI. 2023. Chat gpt 4 painfully slow.
https://community.openai.com/t/
chat-gpt-4-painfully-slow/117996.

[398] OpenAI. 2023. Gpt-4 technical report.

[399] P. J. Ortiz Su’arez, B. Sagot and L. Romary. 2019. Asyn-
chronous pipelines for processing huge corpora on medium
to low resource infrastructures. In Proceedings of the Work-
shop on Challenges in the Management of Large Corpora
(CMLC-7) 2019. Cardiff, 22nd July 2019, pages 9 – 16,
Mannheim. Leibniz-Institut f"ur Deutsche Sprache.

[400] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng,
D. Grangier and M. Auli. 2019. fairseq: A fast, ex-
tensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038.

[401] N. Ousidhoum, X. Zhao, T. Fang, Y. Song and D.-Y.
Yeung. 2021. Probing toxic content in large pre-trained lan-
guage models. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4262–4274.

[402] C. Outeiral and C. Deane. 2022. Codon language em-
beddings provide strong signals for protein engineering.
bioRxiv, pages 2022–12.

[403] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal et al. 2022. Training lan-
guage models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems.

[404] M. Pagliardini, D. Paliotta, M. Jaggi and F. Fleuret. 2023.
Faster causal attention over large sequences through sparse
flash attention.

[405] J. Pan, T. Gao, H. Chen and D. Chen. 2023. What in-
context learning "learns" in-context: Disentangling task
recognition and task learning.

[406] B. Paranjape, S. Lundberg, S. Singh, H. Hajishirzi,
L. Zettlemoyer and M. T. Ribeiro. 2023. Art: Automatic
multi-step reasoning and tool-use for large language mod-
els.

[407] G. Park, B. Park, S. J. Kwon, B. Kim, Y. Lee and D. Lee.
2022. nuqmm: Quantized matmul for efficient inference
of large-scale generative language models. arXiv preprint
arXiv:2206.09557.

[408] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang
and M. S. Bernstein. 2023. Generative agents: Interactive
simulacra of human behavior.

[409] P. S. Park, P. Schoenegger and C. Zhu. 2023. Artifi-
cial intelligence in psychology research. arXiv preprint
arXiv:2302.07267.

[410] A. Patel, B. Li, M. S. Rasooli, N. Constant, C. Raffel and
C. Callison-Burch. 2023. Bidirectional language models
are also few-shot learners.

[411] N. D. Patson, E. S. Darowski, N. Moon and F. Ferreira.
2009. Lingering misinterpretations in garden-path sen-
tences: evidence from a paraphrasing task. Journal of
Experimental Psychology: Learning, Memory, and Cogni-
tion, 35(1):280.

[412] D. Patterson, J. Gonzalez, U. Hölzle, Q. Le, C. Liang,
L.-M. Munguia, D. Rothchild, D. R. So et al. 2022. The
carbon footprint of machine learning training will plateau,
then shrink. Computer, 55(7):18–28.

[413] A. Paullada, I. D. Raji, E. M. Bender, E. Denton and
A. Hanna. 2021. Data and its (dis) contents: A survey of
dataset development and use in machine learning research.
Patterns, 2(11):100336.

[414] M. Pellert, C. M. Lechner, C. Wagner, B. Rammstedt
and M. Strohmaier. 2023. Ai psychometrics: Using psy-
chometric inventories to obtain psychological profiles of
large language models.

[415] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru,
A. Cappelli, H. Alobeidli, B. Pannier, E. Almazrouei et al.
2023. The RefinedWeb Dataset for Falcon LLM: Outper-
forming Curated Corpora with Web Data, and Web Data
Only. ArXiv:2306.01116 [cs].

[416] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Ar-
cadinho, H. Cao, X. Cheng, M. Chung et al. 2023.
RWKV: Reinventing RNNs for the Transformer Era.
ArXiv:2305.13048 [cs].

[417] B. Peng, E. Alcaide, Q. Anthony, A. Albalak, S. Arcad-
inho, H. Cao, X. Cheng, M. Chung et al. 2023. Rwkv:
Reinventing rnns for the transformer era. arXiv preprint
arXiv:2305.13048.

[418] C. Peng, X. Yang, A. Chen, K. E. Smith, N. PourNejatian,
A. B. Costa, C. Martin, M. G. Flores et al. 2023. A study
of generative large language model for medical research
and healthcare.

[419] Y. Peng. 2021. A MARVS analysis of two Chinese near-
synonymous verbs of jumping based on Chinese corpora.
In Proceedings of the 35th Pacific Asia Conference on
Language, Information and Computation, pages 483–492,
Shanghai, China. Association for Computational Lingus-
tics.

[420] E. Perez, S. Huang, F. Song, T. Cai, R. Ring, J. Aslanides,
A. Glaese, N. McAleese et al. 2022. Red teaming lan-
guage models with language models. arXiv preprint
arXiv:2202.03286.

[421] E. Perez, S. Ringer, K. Lukošiūtė, K. Nguyen, E. Chen,
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